Embedding Work Culture in Building Information Modelling (BIM) for Enhancing Collaboration in Global Projects

Maszura Abdul Ghafar, Department of Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Rahinah Ibrahim, Department of Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Zalina Shari, Department of Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Farzad Pour Rahimian, Centre for Sustainable Development, The Grenfell-Baines School of Architecture, Construction and Environment, University of Central Lancashire, Preston, UK

ABSTRACT

Building Information Modelling is further globalising Architecture, Engineering and Construction (AEC) professional partnerships. However, little is known on the effect of cultural and human factors on BIM enabled visualisation applications. This desktop study examined the extant literature on factors relating to application of BIM enabled visualisation technologies as a process that can improve, leverage and conduct visual communication for coordination during implementation of global projects. It identifies BIM enabled visualisation having the capability in facilitating knowledge flows in complex discontinuous working environment of a property development’s life cycle, and supports designers’ understanding in its early working phases. This paper presents the development of a theoretical proposition for embedding local work culture etiquette in BIM enabled visualisation application for augmenting dynamic knowledge transfer among discontinuous members in a building project. The result is expected to benefit rapidly developing countries, e.g. Malaysia, in enabling successful partnerships with counterparts from developed countries.

Keywords: Architecture, Engineering and Construction (AEC), Building Information Model (BIM), Design, Knowledge Flows, Visual Communication, Work Culture

DOI: 10.4018/ij3dim.2013040102
1. INTRODUCTION AND BACKGROUND

Architecture, Engineering and Construction (AEC) team members have ways of leveraging communication to coordinate their activities, although most communication traditions work across many building processes. The authors see AEC visual communication being leveraged through utilisation of technological and professional collaborative tools for managing construction activities and implementation progresses. One of these advanced technologies is Building Information Modelling. Isikdag and Underwood (2010) defined BIM as the information management process throughout the lifecycle of a building which focuses on collaborative use of semantically rich 3D Building Information Models (BIMs). Seminal literatures frequently advocating BIM with its potential for revolutionising the whole AEC industry by enhancing team collaboration (Gu & London, 2010); improving project integration (Woo et al., 2004); leveraging better construction information flow (Ibrahim, Krawczyk, & Schipporiet, 2004); helping documentation flow (Popov, et al., 2006); and providing construction simulation for teamwork planning, clash prevention and coordination interface (Fischer & Kunz, 2004).

Globalisation has made AEC industry, particularly of interest for developing country like Malaysia, utilise BIM enabled visualisation in implementing project delivery through partnerships with their respective counterparts in other countries. The need has been elevated when the Malaysian Government is promoting globalisation of services through exportation of building and professional services in the last 2012 Budget. Business Watch (2005) estimated that the AEC sector in Malaysia is one of the largest industrial employers, representing 9.8% of Malaysian Gross Domestic Product as it employs over 7.1% of workforce. The ability of BIM to depict and analyse construction schedules and logsics (Heesom & Mahdjoubi, 2004), interoperability of data between applications (Fischer & Kunz, 2004), and allowing transition of nD CAD modelling and analysis (Lee et al., 2005) are merits to AEC delivery. These benefits have proven to improve profitability, lower construction cost, and enhance time management and healthier client relationships (Azhar, 2011). Hence, the authors note that the success of AEC projects is highly dependent upon the type, level and quality of their communication exchanges between various disciplines involved in the different design and implementation phases (Pour Rahimian, et al., 2011).

This paper supports Bouchlaghem et al. (2005), in consigning cost as a vestige issue. It heeds their recommendation to focus towards the human issues as increasing number of professionals are embracing BIM enabled visualisation for their building projects. The authors had seen lack of emphasis given to the human factor especially the users’ socio-cultural issues when using these visualisation tools. This paper agrees with Delavari et al. (2011) that further studies would be required on the following issues: 1) superior control over tools, 2) how fast feedback is returned to users, and 3) how much added-value are these tools to team members during the collaborative phase. In anticipation of future works in these areas, the purpose of this paper is setting up the theoretical foundation based upon identification of current literature gaps on how BIM enabled visualisation could enhance visual communication among AEC members in a complex building project process.

2. RESEARCH METHODOLOGY

This research conducted desktop study for examining the impacts of different visual communication approaches using technology and professional collaborative tools to manage project deliveries in the construction industry. The investigation of CAD technologies covers understanding of general conceptual perspectives regarding added-value components associated with BIM enabled visualisation. This is followed by examination from extant literature among others - the relative effect of the CAD technologies (e.g., object-oriented modelling
Related Content

The Integral of Spatial Data Mining in the Era of Big Data: Algorithms and Applications

Digital Photogrammetry and Structure From Motion for Architectural Heritage: Comparison and Integration Between Procedures

Stereo-Vision-Based Fire Detection and Suppression Robot for Buildings

Campaign Optimization through Mobility Network Analysis
Yaniv Altshuler, Erez Shmueli, Guy Zyskind, Oren Lederman, Nuria Oliver and Alex “Sandy” Pentland (2015). *Geo-Intelligence and Visualization through Big Data Trends* (pp. 33-75). [www.irma-international.org/chapter/campaign-optimization-through-mobility-network-analysis/136099/](www.irma-international.org/chapter/campaign-optimization-through-mobility-network-analysis/136099/)

Production of Landslide Susceptibility Map using Bayesian Probability Model