Chapter IX

Overcoming Organizational Barriers to Web Accessibility in Higher Education: A Case Study

Amy Metcalfe
The University of Arizona, USA

ABSTRACT
The number of students with disabilities who attend college is rising, which may be one of the many positive outcomes of the Americans with Disabilities Act of 1990. While issues of adequate access to assistive technologies in computer labs, classrooms, and libraries continue to be of importance for students with disabilities, it is apparent that consideration of the accessibility of academic cyberspace is also important for this growing population of students. This chapter is a case study of a successful Web accessibility initiative at the University of Arizona. Recommendations for both policy and implementation are included, with a discussion of how organizational culture and structure affects such efforts.

INTRODUCTION
The impact of the Americans with Disabilities Act of 1990 has been felt in nearly every aspect of our society. People with disabilities, a group that includes about 53 million Americans, have more opportunities to attend school, to work and to participate in activities common to nondisabled people ten years ago. At the start
of the 21st century, the tenth anniversary of this important piece of social legislation, the application of ADA law to the realm of information technology, has the potential for even greater social reform. In *Information Access and Adaptive Technology* (1997), Cunningham and Coombs describe how technology can affect the lives of people with disabilities:

This cultural revolution is taking place at precisely the same time that America is reaching the peak of the Information Age, a period in which computer technology and electronic information are becoming integral to our society. This technology has been a boon for people with disabilities. Adaptive input and output devices make it possible for people with any type of disability or combination of disabilities to manipulate and use computers, while special computing software and hardware packages have provided unprecedented ways for people with disabilities to accomplish tasks and access information.

However, the promise of computer technology to lead to greater educational and employment opportunities for people with disabilities is often dependent upon the creation and use of assistive technology (hardware) and accessible electronic information (software and Web sites). Unlike other populations experiencing the Digital Divide, for people with disabilities, access to computers is only part of the problem. Assistive technologies, created to interface with computer hardware and software, are often necessary (and costly). At the software and Web-page level, inaccessible coding and scripts create barriers to input, navigation and informational content. In many cases, specialized training, awareness building and organizational support are necessary for widespread changes in accessibility status to occur within an institution’s Web space. Unfortunately, the mere existence of guidelines and policies has not been sufficient impetus for change in some organizations.

The issue of Web accessibility, which concerns Web content and its particular coding, is an excellent example of a case where institutional values and obligations are not automatically made evident in the electronic environment of the World Wide Web. If “institutional Web space” exists, then do the same rules and standards of behavior that apply to an organization in real life also apply to its corner of cyberspace? An important place to study the concept of institutional Web space is in the field of higher education. By the absence of institutional policies that mandate electronic accessibility, barriers to equal educational and work opportunities currently exist within colleges and universities (Burgstahler, 2000). Due to the increasing awareness about the topic at an administrative level, some institutions have chosen to examine their accessibility status and create policies to ensure equal
Related Content

A Four-Dimensional Maxwell Equation for Social Processes in Web-Based Learning and Teaching: Windrose Dynamics as GIS (Games’ Intrinsic Spaces)
[www.irma-international.org/article/four-dimensional-maxwell-equation-social/78535/](www.irma-international.org/article/four-dimensional-maxwell-equation-social/78535/)

cSELF (Computer Science Education from Life): Broadening Participation through Design Agency
[www.irma-international.org/article/cself-computer-science-education-from-life/105619/](www.irma-international.org/article/cself-computer-science-education-from-life/105619/)

Promoting Collaborative Learning in Online Teacher Education
[www.irma-international.org/chapter/promoting-collaborative-learning-online-teacher/67975/](www.irma-international.org/chapter/promoting-collaborative-learning-online-teacher/67975/)

Academy-Industry Collaboration: The Example of Bridge E-Learning
[www.irma-international.org/article/academy-industry-collaboration/2975/](www.irma-international.org/article/academy-industry-collaboration/2975/)

A Knowledge Management Process in Communities of Practice of Engineering Based on the SECI Model for Knowledge
[www.irma-international.org/article/knowledge-management-process-communities-practice/41965/](www.irma-international.org/article/knowledge-management-process-communities-practice/41965/)