
2118

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.9
SQL Code Poisoning:

The Most Prevalent Technique for
Attacking Web Powered Databases

Theodoros Tzouramanis
University of the Aegean, Greece

AbstrAct

This chapter focuses on the SQL code poisoning
attack. It presents various ways in which a Web
database can be poisoned by malicious SQL code,
which can result in the compromise of the system.
Subsequently, techniques are described for the
detection of SQL code poisoning and a number
of lockdown issues that are related to this type of
attack are discussed. This chapter also reviews
security mechanisms and software tools that
protect Web applications against unexpected data
input by users; against alterations of the database
structure; and against the corruption of data and
the disclosure of private and confidential informa-
tion, all of which are owed to the susceptibility of
these applications to this form of attack.

IntroductIon

Web application attacks are continuously on the
rise, posing new risks for any organization that

have an “online presence.” The SQL code poison-
ing or SQL injection attack (CERT, 2002) is one of
the most serious threats faced by database security
experts. Today it is the most common technique
used for attacking, indirectly, Web powered data-
bases and disassembling effectively the secrecy,
integrity, and availability of Web applications.
The basic idea behind this insidious and perva-
sive attack is that predefined logical expressions
within a predefined query can be altered by simply
injecting operations which always result in true
or false statements. With this simple technique,
the attacker can run arbitrary SQL queries and
thus they can extract sensitive customer and order
information from e-commerce applications, or
they can bypass strong security mechanisms and
compromise the backend databases and the file
system of the data server. Despite these threats,
a surprisingly high number of systems on the
Internet are totally vulnerable to this attack.

This chapter focuses on the SQL code poison-
ing attack. It presents various ways in which a
Web database can be poisoned by malicious SQL

 2119

SQL Code Poisoning

code, which can result in the compromise of the
system. Subsequently, techniques are described
for the detection of SQL code poisoning and a
number of lockdown issues that are related to
this type of attack are discussed. This chapter
also reviews security mechanisms and software
tools that protect Web applications against un-
expected data input by users; against alterations
of the database structure; and against the cor-
ruption of data and the disclosure of private and
confidential information, all of which are owed
to the susceptibility of these applications to this
form of attack.

bAckground

Online businesses and organizations are protected
these days by some kind of software or hardware
firewall solution (Theriault & Newman, 2001). The
purpose of the firewall is to filter network traffic
that passes into and out of the organization’s net-
work, limiting the use of the network to permitted,
“legitimate” users. One of the conceptual problems
with relying on a firewall for security is that the
firewall operates at the level of IP addresses and
network ports. Consequently, a firewall does not
understand the details of higher level protocols
such as hypertext transfer protocol, that is, the
protocol that runs the Web applications.

There is a whole class of attacks that operate at
the application layer and that, by definition, pass
straight through firewalls. SQL code poisoning
is one of these attacks. It takes advantage of non-
validated input vulnerabilities to pass SQL com-
mands through a Web application for execution
by a backend database, that is, the heart of most
Web applications. Attackers take advantage of the
fact that programmers often chain together SQL
commands with user-provided parameters, and
can therefore embed SQL commands inside these
parameters. Therefore, the attacker can execute
malicious SQL queries on the backend database
server through the Web application.

In order to be able to perform SQL code poison-
ing hacking, all an attacker needs is a Web browser
and some guess work to find important table and
field names. This is why SQL code poisoning is
one of the most common application layer attacks
currently being used on the Internet. The inventor
of the attack is the Rain Forest Puppy, a former
hacker and, today, a security advisor to interna-
tional companies of software development.

the sQl code PoIsonIng
AttAck

sQl code Poisoning Principles

SQL code poisoning is a particularly insidious
attack since it transcends all of the good plan-
ning that goes into a secure database setup and
allows malicious individuals to inject code directly
into the database management system (DBMS)
through a vulnerable application (Spett, 2002). The
basic idea behind this attack is that the malicious
user counterfeits the data that a Web application
sends to the database aiming at the modification
of the SQL query that will be executed by the

Figure 1. A typical user login form in a Web ap-
plication

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/sql-code-poisoning/8025

Related Content

Regression Testing of Database Applications
Ramzi A. Haraty, Nashat Mansourand Bassel A. Daou (2002). Journal of Database Management (pp. 31-

42).

www.irma-international.org/article/regression-testing-database-applications/3278

Map-Side Join Processing of SPARQL Queries Based on Abstract RDF Data Filtering
Minjae Song, Hyunsuk Oh, Seungmin Seoand Kyong-Ho Lee (2019). Journal of Database Management

(pp. 22-40).

www.irma-international.org/article/map-side-join-processing-of-sparql-queries-based-on-abstract-rdf-data-filtering/230293

The Impact of Ideology on the Organizational Adoption of Open Source Software
Kris Venand Jan Verelst (2010). Principle Advancements in Database Management Technologies: New

Applications and Frameworks (pp. 160-175).

www.irma-international.org/chapter/impact-ideology-organizational-adoption-open/39354

A Novel Crash Recovery Scheme for Distributed Real-Time Databases
Yingyuan Xiao (2009). Handbook of Research on Innovations in Database Technologies and Applications:

Current and Future Trends (pp. 769-787).

www.irma-international.org/chapter/novel-crash-recovery-scheme-distributed/20763

Knowledge Management in Tourism
Daniel Xodoand Héctor Oscar Nigro (2005). Encyclopedia of Database Technologies and Applications (pp.

319-329).

www.irma-international.org/chapter/knowledge-management-tourism/11167

http://www.igi-global.com/chapter/sql-code-poisoning/8025
http://www.irma-international.org/article/regression-testing-database-applications/3278
http://www.irma-international.org/article/map-side-join-processing-of-sparql-queries-based-on-abstract-rdf-data-filtering/230293
http://www.irma-international.org/chapter/impact-ideology-organizational-adoption-open/39354
http://www.irma-international.org/chapter/novel-crash-recovery-scheme-distributed/20763
http://www.irma-international.org/chapter/knowledge-management-tourism/11167

