ABSTRACT

Learning Management Systems (LMS) are facing challenges to improve its traditional focus on individual learning towards social learning. Despite the great success in distributing learning materials and managing students, the availability of the read and write features of social networking applications had encouraged educators to move their learning spaces toward a more interactive applications. Collaborative learning builds its character from social learning, had been established as an activity that enhances students’ knowledge building, team learning and sharing of knowledge among peers. Developing online collaborative learning activity poses many challenges as this involves developing many components to support the learning environment. Therefore it is important to understand each component’s contribution to help guide students learning by themselves socially. Activity theory provides a descriptive framework to elaborate the process of the six components involved in an online collaborative knowledge building activity. This study combines quantitative and qualitative method to collect data from survey, system log and collaborative messages posted in the customised Learning Management System (LMS) called e-Kolaborasi System. Findings suggest that online collaborative learning instructions based on the LMS system were able to assist students in their online collaborative learning activities. Nevertheless the students could only abide the rules to conduct collaborative activities during two periods of time which are during their free time and after practical sessions. This response indicates the reasons as to why the students were not able to give quick feedbacks to their community members.

Keywords: Activity Theory, Computer-Supported Collaborative Learning, Instructional Design, Knowledge Building, Learning Management System, Online Collaborative Learning, Qualitative Method, Quantitative Method, Teachers Training

DOI: 10.4018/jssoe.2012040102
INTRODUCTION

Online collaborative learning has become an interesting activity for students since it involves casual communication among friends and teachers. Many social networking applications support communication for educational purposes. Computer-Supported Collaborative Learning (CSCL) suggests using proper instruction to ensure meaningful learning for students when using computers as the artefacts of collaborative learning. Understanding of learning processes may help educators improve instructions and then redesign learning strategies based on the current needs. In addition, there is a need to understand human engagement with digital technology and all efforts to use that knowledge to design more useful and pleasing artefacts (Kaptelinin & Nardi, 2009). Human behaviour had been a study of usability and usefulness in computer systems development (Mwanza, 2001). Current issues of human behaviour in technology-mediated environment need to address collaborative context as learning method has progressed from individual learning towards social learning. This development has prompted this study to apply activity theory as to guide student activities in an online collaborative learning environment.

ACTIVITY THEORY

The foundation works of Activity theory was inspired by many studies related to human activity. Mostly cited studies are from the Russian/Soviet region which recognises Vygosky’s work as the initial researcher. Learners’ (subject) response to an activity are due to a stimulus or object (objective) and the stimulus-response (S-R) chain uses mediated artefacts (i.e sign, language, tools) to complete its learning activity (Vygosky, 1978). In the late 1970s and early 1980s through two publications; the English translation of Leont’ev’s’s *Activity, Consciousness, and Personality* (1978), and collection papers of Leont’ev’s further explored the interaction between the subject and their learning objec-
Related Content

Sourcing Requirements and Designs for Software as a Service
www.irma-international.org/article/sourcing-requirements-and-designs-for-software-as-a-service/153168/

Service-Oriented Architecture: Adoption Challenges
www.irma-international.org/chapter/service-oriented-architecture/65168/

Capturing Location in Process Models: Comparing Small Adaptations of Mainstream Notation
www.irma-international.org/article/capturing-location-process-models/67579/

Goal-Based Requirements Elicitation for Service Reuse in Cloud Computing
www.irma-international.org/chapter/goal-based-requirements-elicitation-service/65176/

Assessment of Technology Acceptance in Intensive Care Units