Chapter 17
Seismocardiogram and Ballistocardiogram Sensing

Octavian Postolache
Instituto de Telecomunicações and Polytechnic Institute of Setúbal, Portugal

Pedro Girão
Instituto de Telecomunicações and Technical University of Lisbon, Portugal

Gabriela Postolache
Atlantica University, Portugal

ABSTRACT

The paper describes the latest development in seismocardiography and ballistocardiography, including sensors with or without mechanical contact with the body, for cardiac functions monitoring in common daily activity. The authors discuss the information related with the seismocardiogram (SCG) and ballistocardiogram (BCG) and the work on SCG and BCG modeling. The latest advances reported on the devices aiming at BCG and SCG cardiovascular system evaluation are covered, highlighting their key features and novel concepts. The authors also underscore the applications of ElectroMechanical film (EMFi) sensors, MEMS accelerometers and radar sensing technology for vital signs monitoring. Discussion on the current developments and future improvements are included in the paper.

1. INTRODUCTION

Health information obtained by non-invasive and unobtrusive measurement devices allows painless and stress free online patient monitoring without the important constraints that characterize classical devices that need wired connections and complex monitoring procedures. Taking into account these paramount advantages, many research groups developed non-invasive solutions for health monitoring based on the technological progress in microelectronics, embedded processing and data communications. Thus, over several decades, a great variety of electronics and computer technologies have been developed to assist clinical practices for cardiac performance monitoring and heart disease diagnosis.

Heart diseases have been the most important cause of death globally and are a major cause of disability. Heart diseases also result in substantial
health-care expenditures. The demand for practical health care requiring diseases risk detection in daily life, in unrestricted conditions, has been leading to increasing innovation in portable systems with reduced size, weight and power consumption. Ballistocardiography (BCG) and seismocardiography (SCG) provide potential solutions to unobtrusive heart function monitoring because they do not require the contact of electrodes with the body during signal acquisition. The non-invasive and non-obtrusive characteristics of BCG and SCG sensing systems make them interesting solutions for long time monitoring of the cardiac activity. Seismocardiography (SCG) is an emerging, non-invasive technique developed for recording and analysing cardiac vibratory activity as a measure of cardiac contractile functions (Salerno & Zanetti, 1990, 1991; Zanetti, Poliac, & Crow, 1991) while ballistocardiography (BCG) is a technique for producing a graphical representation of the reaction of the body to cardiac ejection forces or the reaction of the body to the blood mass ejected by the heart with each contraction associated with arterial circulation (NASA, 1965; Scarborough & Baker, 1957; Gubner, Rodstein, & Ungerleider, 1953). Both these exams are able to measure directly or indirectly the mechanical functionality of the heart and hemodynamic parameters (Salerno & Zanetti, 1990, 1991; Zanetti, Poliac, & Crow, 1991; NASA, 1965; Scarborough & Baker, 1957; Gubner, Rodstein, & Ungerleider, 1953; Starr & Wood, 1961). Changes and abnormalities in the BCG and SCG have been correlated to various cardiac diseases.

A comparison between seismocardiography and ballistocardiography design and implementation to sense subjects’ cardiac activity is presented here. We discuss the information related with seismocardiogram and ballistocardiogram and the work on SCG and BCG modeling. The latest advances reported on the devices aiming at BCG and SCG cardiovascular system evaluation are covered in the subsequent sections, highlighting their key features and novel concepts. We also underscore the applications of EMFi sensors, MEMS accelerometers and radar sensing technology for vital signs monitoring.

2. BALLISTOCARDIOGRAM AND SEISMOCARDIOGRAM DESCRIPTION

Ballistocardiography (BCG) is a technique used to measure small movements of the body, imparted by the ballistic forces (recoil and impact) associated with cardiac contraction and ejection of blood and with the deceleration of blood flow through the large vessels informing about the overall performance of the circulatory system (Starr & Wood, 1961; Gordon, 1877). The first architectures for ballistocardiography were represented by suspended rigid platforms using elastic ropes, a mechanical system recording the small oscillations of the human body lying on a bed. The first experimental work in the area is reported by Gordon in 1877. Later, in the first decades of the 20th century, important results were reported by Henderson (1905) and Isaac Starr (Starr, Rawson, & Schroeder, 1938; Starr, Rawson, Schroeder, & Joseph, 1938). The later also developed the BCG terminology and is considered by the Cardiovascular System Dynamics Society, USA, the founder of the modern ballistocardiography. In 1936, he built a type of bed BCG measurement device that allowed accurate recordings of the BCG waves. Although important developments were done after the second war in the 50’s and 60’s due to advances in materials and sensing devices, the use of BCG for heart diseases characterization was mainly considered for laboratory researches (Dock, & Taubman, 1949; Nickerson, 1949; Hamilton, Remington, & Dow, 1945; Elliott, Packard, & Kyrazis, 1954). Due to developments in microelectronics, signal processing and data communication in the last decade the number of BCG sensing solutions are growing and some of the implementation are migrating from research
Related Content

A Reconfiguration Method to Improve the Yield of Bandwidth-Limited Pipelined ADCs
[www.irma-international.org/article/reconfiguration-method-improve-yield-bandwidth/72698/](www.irma-international.org/article/reconfiguration-method-improve-yield-bandwidth/72698/)

Using Audience Response Systems to Develop Critical Thinking Skills
[www.irma-international.org/chapter/using-audience-response-systems-develop/5393/](www.irma-international.org/chapter/using-audience-response-systems-develop/5393/)

Design, Development and Testing of a Semi Cylindrical Capacitive Array Type Liquid Interface Level Sensor
[www.irma-international.org/article/design-development-testing-semi-cylindrical/68154/](www.irma-international.org/article/design-development-testing-semi-cylindrical/68154/)

Interactive Response Systems in Higher Education
[www.irma-international.org/chapter/interactive-response-systems-higher-education/5404/](www.irma-international.org/chapter/interactive-response-systems-higher-education/5404/)

Evaluating Content-Management Systems for Online Learning Programs
[www.irma-international.org/chapter/evaluating-content-management-systems-online/27712/](www.irma-international.org/chapter/evaluating-content-management-systems-online/27712/)

22 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage:
[www.igi-global.com/chapter/seismocardiogram-ballistocardiogram-sensing/78182](www.igi-global.com/chapter/seismocardiogram-ballistocardiogram-sensing/78182)