
248

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

INTRODUCTION

A Genetic Algorithm (GA) is an algorithm in-
spired by natural evolution (Mitchell, 1998). To
solve a problem using GA, a candidate solution is
encoded as a chromosome. Normally, a chromo-
some is encoded as a fixed length binary string.
GA searches in the space of this representation.
The length of a chromosome is related to the
size of the search space, for l-bit chromosomes
the search space is 2l points. When l is large, the
computational time becomes very long.

There are some approaches to reduce a search
space. One approach is to apply a heuristic in an
evolution process. For instance, the specific type
of crossover is introduced to preserve some con-
straints can beneficially reduce the search space
(Chen & Smith, 1999). The result shows that the
proposed crossover can find better solution for a
flow shop scheduling problem.

Another approach to reduce the search space
is by using compressed encoding. Compressed
GA employed compressed encoding chromosome
using a format similar to run-length encoding
(Suwannik, Kunasol, & Chongstitvatana, 2005).
The result shows that Compressed GA uses 805

Worasait Suwannik
Kasetsart University, Thailand

LZW Encoding in
Genetic Algorithm

ABSTRACT

To solve a problem using Genetic Algorithms (GAs), a solution must be encoded into a binary string.
The length of the binary string represents the size of the problem. As the length of the binary string in-
creases, the size of the search space also increases at an exponential rate. To reduce the search space,
one approach is to use a compressed encoding chromosome. This paper presents a genetic algorithm,
called LZWGA, that uses compressed chromosomes. An LZWGA chromosome must be decompressed
using an LZW decompression algorithm before its fitness can be evaluated. By using compressed en-
coding, the search space is reduced dramatically. For one-million-bit problem, the search space of the
original problem is 21000000 or about 9.90x10301029 points. When using a compressed encoding, the search
space was reduced to 8.37x10166717 points. LZWGA can solve one-million-bit OneMax, RoyalRoad, and
Trap functions.

DOI: 10.4018/978-1-4666-3628-6.ch015

249

LZW Encoding in Genetic Algorithm

times less fitness evaluations than Simple GA
when solving 128-bit OneMax problem. In c2ga,
the compressed encoding was combined with
compact genetic algorithm (Watchanupaporn,
Soonthornphisaj, & Suwannik, 2006). The per-
formance of the c2ga is better than cGA (Harik,
Lobo, & Goldberg, 1999) in OneMax and Roy-
alRoad problems.

To use Compressed GA, an appropriate number
of bits of the repetition times (the run length) has to
be specified. If the number of bits is too low or too
high the effectiveness of compression is suffered.
To overcome this problem, Kunasol, Suwannik,
and Chongstitvatana (2006) proposed LZWGA.
LZWGA uses a compressed encoding that can be
decompressed using Lempel-Ziv-Welch (LZW)
decompression algorithm. The result shows that
LZWGA outperforms Compressed GA for 2048-
bit OneMax problem. LZWGA is used to solve
one-million-bit OneMax, Royal Road, and Trap
problems. The one-million bit problem has an
enormous search space. The search space of this
problem is 21000000 or 9.90x10301029 points. Solv-
ing the problem of this size using any canonical
GA is not practical. Using LZWGA, the search
space is reduced dramatically. LZWGA can solve
one-million-bit OneMax problem in 18 minutes.

This paper summarizes recent researches on
LZWGA, which cover various aspects of the
algorithm such as selection, crossover, and muta-
tion. This paper is organized as follows. The next
section describes LZWGA. The test problems are

then explained. The results are reported on selec-
tion, crossover, and mutation respectively and a
new genetic operator called Shift is described. The
final sections provide discussion and conclusions.

LZWGA

The main difference between LZWGA and Simple
GA is that a chromosome is in a compressed format.
The LZWGA chromosome has to be decompressed
before its fitness can be evaluated. The pseudo
code of LZWGA is shown in Figure 1. The algo-
rithm begins by creating the first generation of
compressed chromosomes. Before evaluating the
fitness of a chromosome, the compressed chromo-
some is decompressed using LZW Decompression
algorithm. The fitness evaluation is performed
on the uncompressed chromosome. After that,
the new population is created to replace the old
population. The algorithm repeats the process of
decompression, fitness evaluation, and creating
a new population until the termination criterion
is met. The algorithm terminates when a solution
is found or a maximum generation is reached.

A. Creating the First Generation

Unlike a canonical GA, a chromosome in LZWGA
is encoded as integers. The chromosome in LZ-
WGA is in a compressed format. Each integer is
a code for an index of an entry in the dictionary.

Figure 1. LZWGA pseudo code

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/lzw-encoding-genetic-algorithm/74933

Related Content

R*-Tree Based Similarity and Clustering Analysis for Images
Jiaxiong Pi, Yong Shiand Zhengxin Chen (2011). Machine Learning Techniques for Adaptive Multimedia

Retrieval: Technologies Applications and Perspectives (pp. 50-61).

www.irma-international.org/chapter/tree-based-similarity-clustering-analysis/49103

Inconsistency-Induced Learning for Perpetual Learners
Du Zhangand Meiliu Lu (2011). International Journal of Software Science and Computational Intelligence

(pp. 33-51).

www.irma-international.org/article/inconsistency-induced-learning-perpetual-learners/64178

Relevant and Non-Redundant Amino Acid Sequence Selection for Protein Functional Site

Identification
Chandra Dasand Pradipta Maji (2010). International Journal of Software Science and Computational

Intelligence (pp. 19-43).

www.irma-international.org/article/relevant-non-redundant-amino-acid/43896

Gene Selection from Microarray Data for Alzheimer's Disease Using Random Forest
Kazutaka Nishiwaki, Katsutoshi Kanamoriand Hayato Ohwada (2017). International Journal of Software

Science and Computational Intelligence (pp. 14-30).

www.irma-international.org/article/gene-selection-from-microarray-data-for-alzheimers-disease-using-random-

forest/181046

A Core Industrial Maintenance Ontology Development Process
Leila Zemmouchi-Ghomari, Badreddine Midouneand Nadhir Djamiai (2022). International Journal of

Software Science and Computational Intelligence (pp. 1-35).

www.irma-international.org/article/a-core-industrial-maintenance-ontology-development-process/312555

http://www.igi-global.com/chapter/lzw-encoding-genetic-algorithm/74933
http://www.irma-international.org/chapter/tree-based-similarity-clustering-analysis/49103
http://www.irma-international.org/article/inconsistency-induced-learning-perpetual-learners/64178
http://www.irma-international.org/article/relevant-non-redundant-amino-acid/43896
http://www.irma-international.org/article/gene-selection-from-microarray-data-for-alzheimers-disease-using-random-forest/181046
http://www.irma-international.org/article/gene-selection-from-microarray-data-for-alzheimers-disease-using-random-forest/181046
http://www.irma-international.org/article/a-core-industrial-maintenance-ontology-development-process/312555

