
1

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-4666-2669-0.ch001

José Paulo Leal
University of Porto, Portugal

Ricardo Queirós
CRACS and ESEIG/IPP, Porto, Portugal

An Example-Based Generator
of XSLT Programs

ABSTRACT

XSLT is a powerful and widely used language for transforming XML documents. However, its power
and complexity can be overwhelming for novice or infrequent users, many of whom simply give up on
using this language. On the other hand, many XSLT programs of practical use are simple enough to
be automatically inferred from examples of source and target documents. An inferred XSLT program
is seldom adequate for production usage but can be used as a skeleton of the final program, or at least
as scaffolding in the process of coding it. It should be noted that the authors do not claim that XSLT
programs, in general, can be inferred from examples. The aim of Vishnu—the XSLT generator engine
described in this chapter—is to produce XSLT programs for processing documents similar to the given
examples and with enough readability to be easily understood by a programmer not familiar with the
language. The architecture of Vishnu is composed by a graphical editor and a programming engine. In
this chapter, the authors focus on the editor as a GWT Web application where the programmer loads and
edits document examples and pairs their content using graphical primitives. The programming engine
receives the data collected by the editor and produces an XSLT program.

2

An Example-Based Generator of XSLT Programs

INTRODUCTION

Generating a XSLT program from a pair of source
and target XML documents is straightforward. A
transformation with a single template containing
the target document solves this requirement, but is
valid only for the actual example. Using the infor-
mation from the source document, we can abstract
this transformation. The simplest way is to assume
that common strings in both documents correspond
to values that must be copied between them. If we
explicitly identify these correspondences, we can
have more control over which strings are copied
and to which positions. However, a transforma-
tion created in this fashion is still too specific to
the examples and cannot process a similar source
document with a slightly different structure. For
instance, if the source document type accepts a
repeated element and the example has repetitions
of the element then the generated program would
accept exactly repetitions of that element.

Although too specific, a simple XSLT program
can be used as the starting point for generating
a sequence of programs that are more general
and are better structured, ending in a program
with a quality similar to one coded by a human
programmer. To refine an XSLT program we
can use second order XSLT transformations, i.e.
XSLT transformations having XSLT transforma-
tions both as source and target documents. In this
approach, the role of an XSLT generation engine
is to receive source and target examples, and
an optional mapping between the strings of the
two documents, generate an initial program and
control the refinement process towards the final
XSLT program.

The aim of this chapter is the presentation of
Vishnu—an XSLT engine for generating read-
able XSLT programs from examples of source
and target documents. Readability is an essential
feature of the generated programs so that they
can be easily understood by a programmer not
familiar with the language. The architecture of
Vishnu is composed by a graphical editor and a

programming engine. The former acts as a client
where the programmer loads and edits document
examples and pair their content using graphical
primitives. The latter receives the data collected
by the editor and produces an XSLT program.

There are several use cases for an XSLT gen-
eration engine with these features. The Vishnu
generator was designed to interact with a com-
ponent that provides text-editing functions for
the end-user or programmer. A client of Vishnu
can be a plug-in of an Integrated Development
Environment (IDE) such as Eclipse or NetBeans.
In this case, the IDE provides several XML tools
(highlighting, validation, XSLT execution) and
the plug-in is responsible for binding the content
of text buffers and editing positions with the en-
gine and retrieving the generated XSLT program.
Vishnu can also be used as the back-end of a Web
environment for XSLT programming. In this case,
the Web front-end is responsible for editing opera-
tions and invokes engine functions for setting the
example documents and mappings, and retrieving
the generated program. The generator can also be
used as a command line tool as part of a pipeline
for generating and consuming XSLT programs.
In this last case, the generator processes example
documents in the local file systems, making mostly
use of default mappings.

This approach visual XSLT programming has
obvious limitations. Only a subset of all possible
XSLT transformations is programmable by pair-
ing texts on a source and target documents. For
instance, second order transformations or recursive
templates are out of its scope. Use cases for Vishnu
are formatting XML documents in XHTML and
conversion among similar formats. For instance,
creating an XHTML view of an RSS feed and
converting metadata among several XML formats
are among the possible uses of Vishnu. Moreover,
we do not expect the automated features of Vishnu
to produce the final version of an XSLT program.
We view its final result as a skeleton of a trans-
formation that can be further refined using other
tools already available in Eclipse.

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/example-based-generator-xslt-programs/73170

Related Content

An Interactive Personalized Spatial Keyword Querying Approach
Xiangfu Meng, Lulu Zhao, Xiaoyan Zhang, Pan Li, Zeqi Zhaoand Yue Mao (2019). Emerging Technologies

and Applications in Data Processing and Management (pp. 199-219).

www.irma-international.org/chapter/an-interactive-personalized-spatial-keyword-querying-approach/230690

A Logic Programming Perspective on Rules
Leon Sterlingand Kuldar Taveter (2009). Handbook of Research on Emerging Rule-Based Languages and

Technologies: Open Solutions and Approaches (pp. 195-213).

www.irma-international.org/chapter/logic-programming-perspective-rules/35860

Introducing Non-functional Requirements in UML
Guadalupe Salazar-Zarate, Pere Botellaand Ajantha Dahanayake (2003). UML and the Unified Process

(pp. 116-128).

www.irma-international.org/chapter/introducing-non-functional-requirements-uml/30540

Abstracting UML Behavior Diagrams for Verification
María del Mar Gallardo, Jesús Martinez, Pedro Merinoand Ernesto Pimentel (2005). Software Evolution

with UML and XML (pp. 296-320).

www.irma-international.org/chapter/abstracting-uml-behavior-diagrams-verification/29617

The CORAS Methodology: Model-based Risk Assessment Using UML and UP
Folker den Braber, Theo Dimitrakos, Bjorn A. Gran, Mass S. Lund, Ketil Stolenand Jan O. Aagedal (2003).

UML and the Unified Process (pp. 332-357).

www.irma-international.org/chapter/coras-methodology-model-based-risk/30550

http://www.igi-global.com/chapter/example-based-generator-xslt-programs/73170
http://www.irma-international.org/chapter/an-interactive-personalized-spatial-keyword-querying-approach/230690
http://www.irma-international.org/chapter/logic-programming-perspective-rules/35860
http://www.irma-international.org/chapter/introducing-non-functional-requirements-uml/30540
http://www.irma-international.org/chapter/abstracting-uml-behavior-diagrams-verification/29617
http://www.irma-international.org/chapter/coras-methodology-model-based-risk/30550

