
International Journal of People-Oriented Programming, 1(2), 1-23, July-December 2011 1

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Collaborative	Software	Development,	Empirical	Study,	Model	Versioning,	Models,	Optimistic	
Versioning,	Software	Models

1. INTRODUCTION

Software engineering, as any other engineer-
ing discipline, must provide the ability and
means to build systems which are so large and

complex that they have to be built by teams or
even by teams of teams of engineers (Ghezzi et
al., 2002). Today, not only code but also other
artifacts like models play an important role in
software engineering. All of these artifacts entail
significant overhead to manage throughout the
lifecycle, especially when practical concerns
require parallel strands of development.

Towards an Understanding
of Requirements for Model

Versioning Support
Konrad	Wieland,	Vienna	University	of	Technology,	Austria

Geraldine	Fitzpatrick,	Vienna	University	of	Technology,	Austria

Gerti	Kappel,	Vienna	University	of	Technology,	Austria

Martina	Seidl,	Vienna	University	of	Technology	&	Johannes	Kepler	University	Linz,	Austria

Manuel	Wimmer,	Vienna	University	of	Technology,	Austria

ABSTRACT
When	software	is	developed	in	teams	–	the	standard	way	software	is	developed	today	–	versioning	systems	are	
the	first	choice	for	the	management	of	collaboration.	From	a	technical	point	of	view,	versioning	systems	have	
to	face	several	challenges.	Depending	on	the	applied	versioning	paradigm,	functionalities	such	as	synchronous	
editing,	branching,	storing	different	versions,	merging,	etc.	are	required.	Since	much	effort	has	been	spent	
into	realizing	these	tasks,	measurable	progress	has	been	achieved	over	the	last	decades.	Unfortunately,	there	
is	a	lack	of	empirical	studies	to	find	out	the	actual	requirements	arising	from	practice.	Therefore,	the	authors	
conducted	an	online	survey	and	interviewed	representative	users	of	versioning	systems	from	academia	and	
industry.	Special	emphasis	is	placed	on	the	versioning	of	software	models,	which	are	nowadays	becoming	
more	and	more	important	as	there	is	a	trend	to	model-driven	software	engineering.	The	results	of	our	empirical	
studies	show	that	not	all	requirements	of	developers	are	satisfied	by	current	versioning	systems.	Especially,	
more	emphasis	needs	to	be	put	on	the	management	of	collaborative	development,	e.g.,	the	division	of	work	
and	the	management	of	conflicts.

DOI: 10.4018/ijpop.2011070101

2 International Journal of People-Oriented Programming, 1(2), 1-23, July-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

For this purpose, Software Configuration
Management (SCM) provides key tools and
techniques for making the parallel develop-
ment of software systems more manageable
(Tichy, 1988). Amongst others, SCM offers
Version Control Systems (VCS), which allow
reusing single-user modeling/programming
environments for parallel development. Central
repositories, to which developers can commit
their changes and from which developers can
update their local version to the latest version
in the repository, support the management and
administration of software artifacts under de-
velopment such as code and models.

Of course, this holds true not only for
traditional, code-centric software engineering,
but also for model-driven software engineering
(MDSE) (cf. Schmidt, 2006), which has recently
gained momentum in academia as well as in
practice, changing the way in which modern
software systems are built. In MDSE, the task
of programming, i.e., writing code in a textual
programming language such as Java, is replaced
by modeling in a graphical modeling language
such as the Unified Modeling Language (OMG,
2010). The powerful abstraction mechanisms
of models are not only used for documentation
purposes, but also for compiling executable
code directly out of models (Bézivin, 2005).

Software artifacts, code and models differ
in key ways with implications for versioning
and conflict management. In general, standard
techniques established for text-based artifacts
for handling software evolution like version-
ing perform poorly if directly used for models
(cf. Chawate et al., 1996). From a technical
point of view, these incompatibilities might
be explained by the graph-based structure of
models, which might be taken into account by
dedicated algorithms for matching, comparing,
and merging models. While there has been
considerable work to understand and support
conflicting approaches with code artifacts,
the implications and issues when using model
artifacts are less well understood.

Model versioning is still a young research
area compared to code versioning (cf. Brosch et
al., 2011a). In this heterogeneous field, a pleth-

ora of research directions exist trying to meet
the technical challenges of model versioning
systems, mostly concerned with precise conflict
detection and supportive conflict resolution (cf.
Altmanninger et al., 2009b). However, there is
currently a lack of empirical studies trying to
derive the “real” needs of software developers in
practice concerning the collaborative develop-
ment of software systems (cf. Mens, 2002). The
current need for such studies is great, because
several possibilities exist for how software can
be developed collaboratively, both on the techni-
cal level as well as on the organizational level.
The latter aspect is often ignored, especially in
the model versioning research field. If we are
able to understand real world experiences with
model versioning then we would be better able
to identify criteria which should determine the
selection of versioning technologies as well as
collaboration processes from an organizational
viewpoint. Furthermore, lessons learned of
current best practices in collaborative software
development for the various development arti-
facts may be inferred from such studies. To the
best of our knowledge, only a few investigations
have been carried out in order to find answers
to these questions. For example, several issues
arising from practice when merging different
versions of a model are identified in Bendix and
Emanuelsson (2009). However, these findings
are based on informal interviews within one
company and do “not	pretend	to	be	general(ly)”
applicable. Furthermore, the premise of Bendix
and Emanuelsson (2009) is that “model-centric	
development	and	its	problems	do	not	vary	much	
from	company	to	company” which has not been
proven so far. However, models can be used in
different ways, namely as a sketch to discuss
ideas and design alternatives, as a blueprint for
implementation, or for direct code generation
(cf. Fowler, 2003) and, thus, the collaborative
development of models varies from company
to company.

To tackle these mentioned deficiencies,
this paper provides a comprehensive empirical
study, including on the one hand a survey and on
the other hand in-depth qualitative interviews.
The overall goal of the empirical study is to gain

21 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/towards-understanding-requirements-

model-versioning/72687

Related Content

Gender and the Internet User
Cynthia Tysickand Cindy Ehlers (2008). End-User Computing: Concepts,

Methodologies, Tools, and Applications (pp. 27-34).

www.irma-international.org/chapter/gender-internet-user/18167

Determinants of Social Media Impact in Local Government
Mohd Hisham Mohd Sharif, Indrit Troshaniand Robyn Davidson (2016). Journal of

Organizational and End User Computing (pp. 82-103).

www.irma-international.org/article/determinants-of-social-media-impact-in-local-

government/154004

End Users as Expert System Developers?
Christian Wagner (2000). Journal of Organizational and End User Computing (pp. 3-

13).

www.irma-international.org/article/end-users-expert-system-developers/3724

Working toward Expert Status: Love to Hear Students Go Tweet, Tweet,

Tweet
Tamara Girardi (2013). Social Software and the Evolution of User Expertise: Future

Trends in Knowledge Creation and Dissemination (pp. 259-272).

www.irma-international.org/chapter/working-toward-expert-status/69764

Textperts: Utilizing Students’ Skills in the Teaching of Writing
Abigail A. Grant (2013). Social Software and the Evolution of User Expertise: Future

Trends in Knowledge Creation and Dissemination (pp. 247-258).

www.irma-international.org/chapter/textperts-utilizing-students-skills-teaching/69763

http://www.igi-global.com/article/towards-understanding-requirements-model-versioning/72687
http://www.igi-global.com/article/towards-understanding-requirements-model-versioning/72687
http://www.igi-global.com/article/towards-understanding-requirements-model-versioning/72687
http://www.irma-international.org/chapter/gender-internet-user/18167
http://www.irma-international.org/article/determinants-of-social-media-impact-in-local-government/154004
http://www.irma-international.org/article/determinants-of-social-media-impact-in-local-government/154004
http://www.irma-international.org/article/end-users-expert-system-developers/3724
http://www.irma-international.org/chapter/working-toward-expert-status/69764
http://www.irma-international.org/chapter/textperts-utilizing-students-skills-teaching/69763

