
International Journal of People-Oriented Programming, 1(2), 1-23, July-December 2011 1

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Collaborative Software Development, Empirical Study, Model Versioning, Models, Optimistic
Versioning, Software Models

1. INTRODUCTION

Software engineering, as any other engineer-
ing discipline, must provide the ability and
means to build systems which are so large and

complex that they have to be built by teams or
even by teams of teams of engineers (Ghezzi et
al., 2002). Today, not only code but also other
artifacts like models play an important role in
software engineering. All of these artifacts entail
significant overhead to manage throughout the
lifecycle, especially when practical concerns
require parallel strands of development.

Towards an Understanding
of Requirements for Model

Versioning Support
Konrad Wieland, Vienna University of Technology, Austria

Geraldine Fitzpatrick, Vienna University of Technology, Austria

Gerti Kappel, Vienna University of Technology, Austria

Martina Seidl, Vienna University of Technology & Johannes Kepler University Linz, Austria

Manuel Wimmer, Vienna University of Technology, Austria

ABSTRACT
When software is developed in teams – the standard way software is developed today – versioning systems are
the first choice for the management of collaboration. From a technical point of view, versioning systems have
to face several challenges. Depending on the applied versioning paradigm, functionalities such as synchronous
editing, branching, storing different versions, merging, etc. are required. Since much effort has been spent
into realizing these tasks, measurable progress has been achieved over the last decades. Unfortunately, there
is a lack of empirical studies to find out the actual requirements arising from practice. Therefore, the authors
conducted an online survey and interviewed representative users of versioning systems from academia and
industry. Special emphasis is placed on the versioning of software models, which are nowadays becoming
more and more important as there is a trend to model-driven software engineering. The results of our empirical
studies show that not all requirements of developers are satisfied by current versioning systems. Especially,
more emphasis needs to be put on the management of collaborative development, e.g., the division of work
and the management of conflicts.

DOI: 10.4018/ijpop.2011070101

2 International Journal of People-Oriented Programming, 1(2), 1-23, July-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

For this purpose, Software Configuration
Management (SCM) provides key tools and
techniques for making the parallel develop-
ment of software systems more manageable
(Tichy, 1988). Amongst others, SCM offers
Version Control Systems (VCS), which allow
reusing single-user modeling/programming
environments for parallel development. Central
repositories, to which developers can commit
their changes and from which developers can
update their local version to the latest version
in the repository, support the management and
administration of software artifacts under de-
velopment such as code and models.

Of course, this holds true not only for
traditional, code-centric software engineering,
but also for model-driven software engineering
(MDSE) (cf. Schmidt, 2006), which has recently
gained momentum in academia as well as in
practice, changing the way in which modern
software systems are built. In MDSE, the task
of programming, i.e., writing code in a textual
programming language such as Java, is replaced
by modeling in a graphical modeling language
such as the Unified Modeling Language (OMG,
2010). The powerful abstraction mechanisms
of models are not only used for documentation
purposes, but also for compiling executable
code directly out of models (Bézivin, 2005).

Software artifacts, code and models differ
in key ways with implications for versioning
and conflict management. In general, standard
techniques established for text-based artifacts
for handling software evolution like version-
ing perform poorly if directly used for models
(cf. Chawate et al., 1996). From a technical
point of view, these incompatibilities might
be explained by the graph-based structure of
models, which might be taken into account by
dedicated algorithms for matching, comparing,
and merging models. While there has been
considerable work to understand and support
conflicting approaches with code artifacts,
the implications and issues when using model
artifacts are less well understood.

Model versioning is still a young research
area compared to code versioning (cf. Brosch et
al., 2011a). In this heterogeneous field, a pleth-

ora of research directions exist trying to meet
the technical challenges of model versioning
systems, mostly concerned with precise conflict
detection and supportive conflict resolution (cf.
Altmanninger et al., 2009b). However, there is
currently a lack of empirical studies trying to
derive the “real” needs of software developers in
practice concerning the collaborative develop-
ment of software systems (cf. Mens, 2002). The
current need for such studies is great, because
several possibilities exist for how software can
be developed collaboratively, both on the techni-
cal level as well as on the organizational level.
The latter aspect is often ignored, especially in
the model versioning research field. If we are
able to understand real world experiences with
model versioning then we would be better able
to identify criteria which should determine the
selection of versioning technologies as well as
collaboration processes from an organizational
viewpoint. Furthermore, lessons learned of
current best practices in collaborative software
development for the various development arti-
facts may be inferred from such studies. To the
best of our knowledge, only a few investigations
have been carried out in order to find answers
to these questions. For example, several issues
arising from practice when merging different
versions of a model are identified in Bendix and
Emanuelsson (2009). However, these findings
are based on informal interviews within one
company and do “not pretend to be general(ly)”
applicable. Furthermore, the premise of Bendix
and Emanuelsson (2009) is that “model-centric
development and its problems do not vary much
from company to company” which has not been
proven so far. However, models can be used in
different ways, namely as a sketch to discuss
ideas and design alternatives, as a blueprint for
implementation, or for direct code generation
(cf. Fowler, 2003) and, thus, the collaborative
development of models varies from company
to company.

To tackle these mentioned deficiencies,
this paper provides a comprehensive empirical
study, including on the one hand a survey and on
the other hand in-depth qualitative interviews.
The overall goal of the empirical study is to gain

21 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/towards-understanding-requirements-

model-versioning/72687

Related Content

Gender and the Internet User
Cynthia Tysickand Cindy Ehlers (2008). End-User Computing: Concepts,

Methodologies, Tools, and Applications (pp. 27-34).

www.irma-international.org/chapter/gender-internet-user/18167

Determinants of Social Media Impact in Local Government
Mohd Hisham Mohd Sharif, Indrit Troshaniand Robyn Davidson (2016). Journal of

Organizational and End User Computing (pp. 82-103).

www.irma-international.org/article/determinants-of-social-media-impact-in-local-

government/154004

End Users as Expert System Developers?
Christian Wagner (2000). Journal of Organizational and End User Computing (pp. 3-

13).

www.irma-international.org/article/end-users-expert-system-developers/3724

Working toward Expert Status: Love to Hear Students Go Tweet, Tweet,

Tweet
Tamara Girardi (2013). Social Software and the Evolution of User Expertise: Future

Trends in Knowledge Creation and Dissemination (pp. 259-272).

www.irma-international.org/chapter/working-toward-expert-status/69764

Textperts: Utilizing Students’ Skills in the Teaching of Writing
Abigail A. Grant (2013). Social Software and the Evolution of User Expertise: Future

Trends in Knowledge Creation and Dissemination (pp. 247-258).

www.irma-international.org/chapter/textperts-utilizing-students-skills-teaching/69763

http://www.igi-global.com/article/towards-understanding-requirements-model-versioning/72687
http://www.igi-global.com/article/towards-understanding-requirements-model-versioning/72687
http://www.igi-global.com/article/towards-understanding-requirements-model-versioning/72687
http://www.irma-international.org/chapter/gender-internet-user/18167
http://www.irma-international.org/article/determinants-of-social-media-impact-in-local-government/154004
http://www.irma-international.org/article/determinants-of-social-media-impact-in-local-government/154004
http://www.irma-international.org/article/end-users-expert-system-developers/3724
http://www.irma-international.org/chapter/working-toward-expert-status/69764
http://www.irma-international.org/chapter/textperts-utilizing-students-skills-teaching/69763

