
96

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

1. INTRODUCTION

We provide a method to systematically develop
enterprise application architectures from problem
descriptions. The problem descriptions are based
on Jackson’s problem frame approach (Jackson,
2001). For enterprise applications, we have de-
veloped a specialized problem frame that takes
the specifics of such applications into account

(Choppy & Reggio, 2006). In particular, new
domain types – such as business worker and
business object – are introduced. We describe the
requirements through problem diagrams that are
instances of the enterprise application frame and
of other problem frames.

In addition to Jackson’s problem frame ap-
proach, we represent the business model un-
derlying the business application by a domain

Christine Choppy
LIPN, University Paris 13, France

Denis Hatebur
University Duisburg-Essen, Germany

Maritta Heisel
University Duisburg-Essen, Germany

Gianna Reggio
Universita di Genova, Italy

Enterprise Applications:
From Requirements to Design

ABSTRACT

The authors provide a method to systematically develop enterprise application architectures from
problem descriptions. From these descriptions, they derive two kinds of specifications: a behavioral
specification describes how the automated business process is carried out. It can be expressed using
activity or sequence diagrams. A structural specification describes the classes to be implemented and
the operations they provide. The structural specification is created in three steps. All the diagrams are
expressed in UML.

DOI: 10.4018/978-1-4666-2199-2.ch006

97

Enterprise Applications

knowledge diagram. Such a diagram identifies
the domains relevant for the business process
to be automated and states how they are related.
It serves to analyze the business process to be
automated and helps to construct the appropriate
instances of the enterprise application frame, thus
obtaining the problem diagrams.

From the problem diagrams, we derive two
kinds of specifications: a behavioral specification
describes how the automated business process
is carried out. It can be expressed using activity
or sequence diagrams. A structural specification
describes the classes to be implemented and the
operations they provide. This specification is ex-
pressed as a class diagram, where all operations
are specified in OCL.

With these different models, we have described
the software development problem in a detailed
way, taking into account the specifics of business
applications. This makes it possible to develop
a suitable software architecture in a systematic
way. We proceed similarly as described in earlier
work (Choppy, Hatebur, & Heisel, 2011), where
we derive software architectures from problem
descriptions for arbitrary software. In this work,
we make use of the fact that the software devel-
opment problem is decomposed in subproblems
that fit to the enterprise application frame. Taking
into account the identified business objects, we
focus on how these objects can best be stored and
accessed. In this context, questions of distributing
the software to be developed and the information
to be stored are addressed, too.

In a first step, we create an initial architec-
ture. To obtain that architecture, we first have
to decide on the responsibilities of the software
to be developed (which is called machine in the
problem frames approach). We have to inspect all
domains occurring in the problem diagrams and
decide if they will be part of the machine or not.
Some domains may reside in the environment but
still need to have an internal representation in the
machine. The rules given in (Choppy & Reggio,
2006) support this task. Moreover, the initial

architecture reflects the problem decomposition
that was obtained by applying the problem frame
approach. Each subproblem machine becomes a
component in the initial architecture.

The initial architecture need not be imple-
mentable, because the interaction between the
different components has not yet been taken
into account. Therefore, we transform the initial
architecture into an implementable architecture.
To create the implementable architecture we have
to consider technical requirements, for example
that some functionality should be implemented
on another computer. In business applications,
there is usually a database, which may be located
on a different computer than the machine we are
building. In that case, we have to split the problem
diagrams and create corresponding subproblem
diagrams that separate the different machines
accordingly. Conversely, in many cases, only
one database is used to store different kinds of
information, such that the components represent-
ing the different domains have to be merged into
the database component. Moreover, we introduce
coordinator components, considering the formal
descriptions of the business model, and facade
components. Finally, we allocate all machines that
solve the different problems or subproblems and
the considered domains to physical components
of the machine to be built.

The implementable architecture that is obtained
in this way does not follow a particular architec-
tural style. If, for example, a layered architecture
is wished for, the implementable architecture can
further be transformed into a layered one, as is
described in (Choppy et al.., 2011).

All the diagrams that we present in this chapter
are expressed in UML instead of the original nota-
tion used by Jackson (Jackson, 2001). This makes
it possible to exploit the additional expressive
power provided by UML class diagrams and also
to represent software architectures and problem
descriptions in the same notational framework.
Carrying over the problem-frame approach to
UML is achieved by defining a UML profile for

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/enterprise-applications-requirements-

design/72013

Related Content

Software Architecture Practices in Agile Enterprises
Veli-Pekka Elorantaand Kai Koskimies (2013). Aligning Enterprise, System, and Software Architectures

(pp. 230-249).

www.irma-international.org/chapter/software-architecture-practices-agile-enterprises/72019

Design, Development, and Implementation of an ERP Security Course
Theodosios Tsiakisand Theodoros Kargidis (2013). Enterprise Resource Planning: Concepts,

Methodologies, Tools, and Applications (pp. 475-485).

www.irma-international.org/chapter/design-development-implementation-erp-security/77233

The Role of Emerging Technologies in Developing and Sustaining Diverse Suppliers in

Competitive Markets
Alvin J. Williams (2013). Enterprise Resource Planning: Concepts, Methodologies, Tools, and Applications

(pp. 1550-1560).

www.irma-international.org/chapter/role-emerging-technologies-developing-sustaining/77289

Using Obstacles for Systematically Modeling, Analysing, and Mitigating Risks in Cloud Adoption
Shehnila Zardari, Funmilade Faniyiand Rami Bahsoon (2013). Aligning Enterprise, System, and Software

Architectures (pp. 275-296).

www.irma-international.org/chapter/using-obstacles-systematically-modeling-analysing/72021

Achieving Business Benefits from ERP Systems
Alok Mishra (2008). Enterprise Resource Planning for Global Economies: Managerial Issues and

Challenges (pp. 77-92).

www.irma-international.org/chapter/achieving-business-benefits-erp-systems/18430

http://www.igi-global.com/chapter/enterprise-applications-requirements-design/72013
http://www.igi-global.com/chapter/enterprise-applications-requirements-design/72013
http://www.irma-international.org/chapter/software-architecture-practices-agile-enterprises/72019
http://www.irma-international.org/chapter/design-development-implementation-erp-security/77233
http://www.irma-international.org/chapter/role-emerging-technologies-developing-sustaining/77289
http://www.irma-international.org/chapter/using-obstacles-systematically-modeling-analysing/72021
http://www.irma-international.org/chapter/achieving-business-benefits-erp-systems/18430

