
33

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

DOI: 10.4018/978-1-4666-2503-7.ch002

Andreas Metzger
Paluno (The Ruhr Institute for Software Technology), University of Duisburg-Essen, Germany

Elisabetta Di Nitto
Politecnico di Milano, Italy

Addressing Highly Dynamic
Changes in Service-
Oriented Systems:

Towards Agile Evolution and Adaptation

ABSTRACT

This chapter sets out to introduce relevant foundations concerning evolution and adaptation of service-
oriented systems. It starts by sketching the historical development of software systems from monolithic
and mostly static applications to highly-dynamic, service-oriented systems. Then, it provides an overview
and more thorough explanation of the various kinds of changes that may need to be faced by service-
oriented systems. To understand how such changes could be addressed, the chapter introduces a refer-
ence service life-cycle model which distinguishes between evolution, viz. the manual modification of
the specification and implementation of the system during design-time, and (self-)adaptation, viz. the
autonomous modification of a service-oriented system during operation. Based on the discussion of the
key activities prescribed by that life-cycle, the chapter elaborates on the need for agility in both adapta-
tion and evolution of service-oriented systems.

34

Addressing Highly Dynamic Changes in Service-Oriented Systems

1. INTRODUCTION

For future software systems and software develop-
ment processes, the only constant will be change.
The “world” in which those future software sys-
tems operate is reaching unprecedented levels of
dynamicity (de Lemos et al., 2011). Those systems
will need to operate correctly in spite of changes
in, for example, user requirements, legal regula-
tions, and market opportunities. They will have to
operate despite a constantly changing context that
includes, for instance, usage settings, locality, end-
user devices, network connectivity and computing
resources (such as offered by Cloud computing).
Furthermore, expectations by end-users concern-
ing the personalization and customization of those
systems will become increasingly relevant for
market success (Adomavicius & Tuzhilin, 2005).

Modern software technology has enabled us
to build software systems with a high degree of
flexibility. The most important development in this
direction is the concept of service and the Service-
oriented Architecture (SOA) paradigm (Erl, 2004;
Kaye, 2003; Josuttis, 2007). A service-oriented
system is built by “composing” software services
(and is thus also called “service composition” or
“composed service” in the literature).

Software services achieve the aforementioned
high degree of flexibility by separating ownership,
maintenance and operation from the use of the
software. Service users do not need to acquire,
deploy and run software, because they can access
its functionality from remote through service in-
terfaces. Ownership, maintenance and operation
of the software remains with the service provider
(Di Nitto, et al., 2008).

While service-orientation offers huge benefits
in terms of flexibility, service-oriented systems
face yet another level of change and dynamism.
Services might disappear or change without the
user of the service having control over such a
change.

Agility, i.e., the ability to quickly and effec-
tively respond to changes, will thus play an ever
increasing role for future software systems to live
in the highly dynamic “world” as sketched above.
Agility can be considered from two viewpoints:

• First, agility may concern the evolution of
the system. This means that it concerns the
development process and how engineer-
ing activities (such as requirements engi-
neering and implementation) should be
performed to timely address changes by
evolving the software.

• Secondly, agility may concern the adapta-
tion of the system. This means that it con-
cerns the system itself and how the system
should respond to changes (Papazoglou et
al., 2007). Agility in adaptation is typically
achieved through self-adaptation, i.e., the
autonomous modification of a service-ori-
ented system during operation.

In this chapter, we first sketch the historical
development of software systems from monolithic
and mostly static applications to highly-dynamic,
service-oriented systems (Section 2). Then, we
provide an overview and more thorough explana-
tion of the various kinds of changes that need to be
faced and how these could be addressed (Section
3). As reference for the remainder of the chapter,
we then introduce a service life-cycle model which
integrates evolution and adaptation into a coherent
framework (Section 4). After elaborating on the
activities prescribed by that life-cycle, we discuss
the need for agility in evolution (Section 5) and
adaptation (Section 6). We conclude this chapter
with our perspectives on agile development for
service-oriented systems (Section 7).

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/addressing-highly-dynamic-changes-

service/70728

Related Content

Some Group Theoretic Notions in Fuzzy Multigroup Context
Paul Augustine Ejegwa (2020). Handbook of Research on Emerging Applications of Fuzzy Algebraic

Structures (pp. 34-62).

www.irma-international.org/chapter/some-group-theoretic-notions-in-fuzzy-multigroup-context/247646

A Semantic-Enabled Framework for E-Government Systems Development
Jean Vincent Fonou-Dombeuand Magda Huisman (2018). Computer Systems and Software Engineering:

Concepts, Methodologies, Tools, and Applications (pp. 501-518).

www.irma-international.org/chapter/a-semantic-enabled-framework-for-e-government-systems-development/192890

Processes: Planning the Steps to the Goal
 (2019). Software Engineering for Enterprise System Agility: Emerging Research and Opportunities (pp.

131-167).

www.irma-international.org/chapter/processes/207085

Using Model-Driven Risk Analysis in Component-Based Development
Gyrd Brændelandand Ketil Stølen (2012). Dependability and Computer Engineering: Concepts for

Software-Intensive Systems (pp. 330-380).

www.irma-international.org/chapter/using-model-driven-risk-analysis/55335

Threats Classification: State of the Art
Mouna Jouiniand Latifa Ben Arfa Rabai (2018). Computer Systems and Software Engineering: Concepts,

Methodologies, Tools, and Applications (pp. 1851-1876).

www.irma-international.org/chapter/threats-classification/192950

http://www.igi-global.com/chapter/addressing-highly-dynamic-changes-service/70728
http://www.igi-global.com/chapter/addressing-highly-dynamic-changes-service/70728
http://www.irma-international.org/chapter/some-group-theoretic-notions-in-fuzzy-multigroup-context/247646
http://www.irma-international.org/chapter/a-semantic-enabled-framework-for-e-government-systems-development/192890
http://www.irma-international.org/chapter/processes/207085
http://www.irma-international.org/chapter/using-model-driven-risk-analysis/55335
http://www.irma-international.org/chapter/threats-classification/192950

