
208

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

Stéphane Frénot
University of Lyon, INRIA INSA-Lyon, F-69621, France

Frédéric Le Mouël
University of Lyon, INRIA INSA-Lyon, F-69621, France

Julien Ponge
University of Lyon, INRIA INSA-Lyon, F-69621, France

Guillaume Salagnac
University of Lyon, INRIA INSA-Lyon, F-69621, France

Various Extensions for the
Ambient OSGi Framework

ABSTRACT

OSGi is a wrapper above the Java Virtual Machine that embraces two concepts: component approach
and service-oriented programming. The component approach enables a Java run-time to host several
concurrent applications, while the service-oriented programming paradigm allows the decomposition
of applications into independent units that are dynamically bound at runtime. Combining component
and service-oriented programming greatly simplifies the implementation of highly adaptive, constantly
evolving applications. This, in turn, is an ideal match to the requirements and constraints of ambient
intelligence computing, such as adaptation to changes associated with context evolution. OSGi par-
ticularly fits ambient requirements and constraints by absorbing and adapting to changes associated
with context evolution. However, OSGi needs to be finely tuned in order to integrate ambient specific
issues. This paper focuses on Zero-configuration architecture, Multi-provider framework, and Limited
resource requirements. The authors studied many OSGi improvements that should be taken into account
when building OSGi-based gateways. This paper summarizes the INRIA Amazones teamwork (http://
amazones.gforge.inria.fr/) on extending OSGi specifications and implementations to cope with ambient
concerns. This paper references three main concerns: management, isolation, and security.

DOI: 10.4018/978-1-4666-2056-8.ch012

209

Various Extensions for the Ambient OSGi Framework

INTRODUCTION

Using OSGi technology in ambient environ-
ments requires focusing on specific problems
such footprint of the run-time framework, zero
configuration of the application and service
provisioning for multi-provider environments.
Because ambient intelligence is, and will remain,
based on hardware with limited resources, the size
and complexity of the framework have to be kept
under control. The kind of platform we address is
that of middle-sized devices, like smart phones,
set-top boxes or automotive embedded systems.
They have much more computing resources than
tiny embedded systems like micro-controllers,
but much less then commodity PCs or traditional
servers. We call these platforms gateway devices,
since most of the time they act as intermediaries
between a local network of services and the In-
ternet. As an illustration, the platforms we used in
our experimentations were ARM-based devices
as the LinkSys NSLU2 (266Mhz CPU, 32MB
RAM, 8MB Flash) or sheeva PC plugs (1.2Ghz
CPU, 521MB RAM, 512MB flash).

Devices for ambient environment should work
in an autonomic way without any user interaction
apart from network and electrical connections
and hardware factory resets. They should address
many kinds of concurrent applications from many
providers. Each of them shall have its own running
space, where he is able to manage its own local
information and interact with local equipments.
This management model is similar to the Apple
and Android store model where the end-user has
the ability to choose its hosted applications, and
where each of them may have its own autonomy.
This implies a dynamic architecture where each
service provider may have an application life-
cycle that is neither bounded nor constrained
by the gateway system and hardware life-cycle.
Furthermore, various external constraints such as
costs and environmental issues distinguish gate-
way hardware from data-centers. The former has

resource constrains both in memory and processing
power that are not compliant with full best-effort
developed applications.

In this article, we compiled most of our current
OSGi-related proposals in order to have a synthetic
view of the investigated extensions. The paper is
divided in three sections. First we summarize the
OSGi framework and focuses on our specific con-
cerns. Next, we present each provided extension
as a walkthrough of our various publications. The
last section synthesizes our proposed extensions.

OSGi Context

OSGi (http://www.osgi.org/Main/HomePage) is
a container framework built on top of the Java
platform. It hosts deployment units called bundles,
which contain Java resources such as compiled
classes, properties files or dynamically linked
native libraries. Each bundle features an Activa-
tor class, which is the entry point to be notified
when the bundle is started or stopped. A descrip-
tor, expressed as a regular Java manifest, details
meta-data such as the Activator qualified name,
or the various requirements the bundle expects,
such as the presence of another bundle exposing
a specific Java package.

The OSGi platform automatically checks de-
pendencies between bundles and controls the life-
cycle of each bundle. One key feature of the OSGi
framework is the seamless support of application
deployment: new applications can be installed, up-
dated and uninstalled at runtime without requiring
a restart of the Java virtual machine itself, thanks
to classloaders native isolation. This streamlines
administration enables multiple hosted applica-
tions installed as independent deployment units.

Bundles are typically materialized as JAR
archives that can even be fetched by the OSGi
framework from a remote HTTP server. Each
bundle is associated with a dedicated Java class
loader that provides resource isolation with
respect to the other bundles. Unlike the local,

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/various-extensions-ambient-osgi-

framework/68952

Related Content

Fatigue Damage Prognostics and Life Prediction with Dynamic Response Reconstruction Using

Indirect Sensor Measurements
Jingjing He, Xuefei Guanand Yongming Liu (2013). Diagnostics and Prognostics of Engineering Systems:

Methods and Techniques (pp. 376-390).

www.irma-international.org/chapter/fatigue-damage-prognostics-life-prediction/69688

Systematic Design Principles for Cost-Effective Hard Constraint Management in Dynamic

Nonlinear Systems
Satyakiran Munagaand Francky Catthoor (2013). Innovations and Approaches for Resilient and Adaptive

Systems (pp. 1-28).

www.irma-international.org/chapter/systematic-design-principles-cost-effective/68941

Finding Topic Experts in the Twitter Dataset Using LDA Algorithm
Ashwini Anandrao Shirolkarand R. J. Deshmukh (2019). International Journal of Applied Evolutionary

Computation (pp. 19-26).

www.irma-international.org/article/finding-topic-experts-in-the-twitter-dataset-using-lda-algorithm/225039

Abstract Fault Tolerance: A Model-Theoretic Approach to Fault Tolerance and Fault

Compensation without Error Correction
Leo Marcus (2013). Innovations and Approaches for Resilient and Adaptive Systems (pp. 57-67).

www.irma-international.org/chapter/abstract-fault-tolerance/68943

The Constitution of the Activity Domain
Lars Taxén (2010). Using Activity Domain Theory for Managing Complex Systems (pp. 78-107).

www.irma-international.org/chapter/constitution-activity-domain/39673

http://www.igi-global.com/chapter/various-extensions-ambient-osgi-framework/68952
http://www.igi-global.com/chapter/various-extensions-ambient-osgi-framework/68952
http://www.irma-international.org/chapter/fatigue-damage-prognostics-life-prediction/69688
http://www.irma-international.org/chapter/systematic-design-principles-cost-effective/68941
http://www.irma-international.org/article/finding-topic-experts-in-the-twitter-dataset-using-lda-algorithm/225039
http://www.irma-international.org/chapter/abstract-fault-tolerance/68943
http://www.irma-international.org/chapter/constitution-activity-domain/39673

