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ABSTRACT

In this chapter we apply (1./, A)-ES to noisy test functions, in order to
investigate the effect of multi-parent versions of both intermediate
recombination and diser ete recombination. Among the many for mul ations of
ES wetest threein particular; Classical-ES(CES), i.e., Schwefel’ soriginal
ES(Schwefel, 1995, Back, 1996); Fast-ES(FES), i.e., Yaoand Liu’ sextended
ES(Yao & Liu, 1997); and Robust-ES(RES), i.e., our extended ES(Ohkura,
2001). Computer simulations are used to compar e the perfor mance of multi-
parent ver sionsof inter mediate recombination and discreterecombinationin
CES FES and RES. We saw that the performance of the (1 / 1, A)-ES
algorithmsdepended onthe particul ar.objectivefunctions. However, the FES
and RES algorithms were seen.to be improved by multi-parent versions of
discrete recombination applied to both object parameters and strategy
parameters.
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INTRODUCTION

Noiseisacommon phenomenoninmany real-worldproblems. For example,
inthefiedof informationengineering, any sgnd returnedfromtherea worldusualy
includesasignificant amount of noise. Alsointhefield of Evol utionary Robotics
(Harvey etd., 1997), smul ationmode saredevelopedby taking noiseinto account
inorder todecreasethegap betweensimulated andreal-worldrobot performance
(Jacobi etd ., 1995). Insuch cases, Evolutionary Algorithms(EAs) work well even
inthepresenceof noise:

EAshavethreemainapproaches, namely Evol utionary Programming (EP),
EvolutionStrategies(ES) and GeneticAlgorithms(GAS). EShasseverd formulations
(Schwefel, 1995, Back, 1996). (1/ p, A)-ESisthegeneral formfor real-valued
parameter optimizationproblems, inwhichp parentsgenerateA offspringthrough
recombination and mutation at each generation, and the best 1 offspring are
selected deterministically fromtheA offspringtoreplacethecurrent set of parents.
p determinesthenumber of parentstoformonenew offspring, withthecasewhere
p>2knownasmulti-recombination (Beyer, 2001).

In(u/ p,A)-ES, Beyer (1995) theoretically investigated thecaseof p=pifor
thegpherefunction, findinga-fold gpeedup comparedto ESswithout recombi nation.
For ESs, each individua has a pair of real-valued vectors, i.e., the object
parametersand strategy parameters, withstrategy parametersroughly determining
thesizeof mutationappliedto object parameters. Beyer used recombinationonly
ontheobject parameters, however itisnecessary for ESresearcherstoinvestigate
the effect of recombination on not only object parameters but also strategy
parameters, bothempirically andtheoretically.

There are two popular recombination operators, namely ‘intermediate
recombinationanddi screterecombination. Many ESresearchers(Béck & Schwefd,
1993, Béck & Eiben, 1998; Eiben & Béck; 1998).often apply only intermediate
recombinationtostrategy parametersdueto Schwefel’ sgenera recommendations
(Schwefd, 1995). However, Changetal. (2001) experimenta ly investigated multi-
parent versionsof bothintermediaterecombinationand discreterecombinationon
strategy parameters, and showed the advantages of not only intermediate
recombination but also discrete recombination. They used 11 standard test
functionsandtested ESwith Gaussanmutation, or Classica-ES(CES). However,
thetest functionsthey useddid notincorporatenoise. Thuswemustinvestigatethe
performanceof ESswithmulti-parent recombinationonnoisy testfunctionsinorder
toapply ESstoreal world optimization problems.

In this chapter we apply (i /4, A)-ES to noisy test functions, in order to
investigatetheeffectof multi-parent versionsof bothintermediaterecombination
anddi screterecombination. Among themany formul ationsof ESs, wetest threein
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