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From Observable Effects to 
Unobservable Causes

As we have discussed in previous chapters, an 
artificial neural network is an information-pro-
cessing system that maps a descriptive feature 
vector into a class assignment vector. In so doing, 
a neural network is nothing more than a complex 
and intrinsically nonlinear statistical classifier. It 
extracts the statistical central tendency of a series 
of exemplars (the learning set) and thus comes 
to encode information not just about the specific 
exemplars, but about the stereotypical feature-
set displayed in the training data (Churchland, 
1989; Clark, 1989, 1993; Franklin, 1995). That 
means, it will discover which sets of features 
are most commonly present in the exemplars, or 
commonly occurring groupings of features. In 
this way, semantic features statistically frequent 
in a set of learning exemplars come to be both 
highly marked and mutually associated. “Highly 
marked” means that the connection weights about 
such common features tend to be quite strong. 
“Mutually associated” means that co-occurring 
features are encoded in such a way that the acti-
vation of one of them will promote the activation 
of the other. 

As a learning mechanism, a neural network 
looks as if it explicitly generates and stores pro-
totypes of, for example, the typical stone knife 
of this period, the typical burial practice in this 
community, the typical social organization in 
this period and place. However, there are no 
such explicit, stored items. What exist are sets 
of connection weights and synaptic efficacies, 
respectively. The prototype is not a thing stored 
at some specific place within the network; it is 
not an ideal representation of reality waiting to 
be retrieved by a stimulus. The extraction of the 
prototype arises as an emergent consequence of 
the proper selection of some characteristic features 
or input variables.

A prototype as formed within a neural network 
is by definition “general,” in the same sense in 
which a property is general: it has many instances, 
and it can represent a wide range of diverse ex-
amples. However, this property does not mean 
that prototypes are universal generalizations. No 
prototype feature needs to be universal, or even 
nearly universal, to all examples in the class. 
Furthermore, prototypes allow us a welcome de-
gree of looseness precluded by the strict logic of 
universal quantifier: not all Fs need to be Gs, but 
the standard or normal ones are, and the non-stan-
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dard ones must be related by a relevant similarity 
relationship to these that properly are G.

Different neurons represent different “proto-
typical values” along the continuum, and respond 
with graded signals reflecting how close the cur-
rent exemplar is to their preferred value. Note 
that what is really being stored is the degree to 
which one neuron, representing a micro-feature 
of the final concept or prototype, predicts another 
neuron or micro-feature. Thus, whenever a cer-
tain configuration of micro-features is present a 
certain other set of micro-features is also present 
(Rumelhart, 1989). This is important, because it 
means that the system does not fall into the trap of 
needing to decide which category to put a pattern 
in before knowing which prototype to average. The 
acquisition of the different prototypes proceeds 
without any sort of explicit categorization. If the 
patterns are sufficiently dissimilar, there is no 
interference among them at all. 

It is clear that a single prototype represents 
a wide range of quite different possible inputs: 
it represents the extended family of relevant 
features that collectively unite the relevant class 
of stimuli into a single category. Any member of 
that diverse class of stimuli will activate the entire 
prototype. In addition, any other input stimulus 
that is similar to the members of that class, in part 
or completely, will activate a pattern that is fairly 
close to the prototype. Consequently, a prototype 
vector activated by any given visual stimulus will 
exemplify the accumulated interactions with all 
the possible sources of the same or similar stimuli 
in proportion to the frequency with which they 
have been experienced.

The ability to represent both prototypical infor-
mation and information about specific instances 
is the basis of the neurocomputing success. We 
can activate two properties, and discover which 
outputs are most likely to fit that scenario. The 
network will initially produce higher activations 
in the output units which posses any of these 
properties, with those sharing both properties 

getting the highest activations. The units for the 
most widely shared properties also become the 
most active. Thus the network not only identifies 
which outputs shared the initial pair of properties, 
but what their other properties were likely to be, 
and which among those not possessing the initial 
pair show the best fit with those who did satisfy 
the initial pair of properties. 

This is an important property of the model, but 
the importance of this property increases when we 
realize that the model can average several patterns 
in the same composite memory trace. Thus, one 
neural network can be trained to exhibit behavior 
appropriate to knowledge of a number of distinct 
prototypes, such as an arrow point, a settlement of 
a particular kind, or a kind of social organization. 
Interestingly, if the input is indeterminate between 
a stone knife and a stone scraper, for instance, the 
neural network will generate an overall pattern, 
as if it had an idea not just of knives and scrap-
ers but also on stone tools. We see then that the 
talent of the system is used to generate a typical 
set of properties associated with some descrip-
tion, even though all the system directly knows 
about are individuals, none of whom needs to be 
a perfectly typical instantiation of the description 
in question.

This way of representing concepts is the 
consequence of graduated learning in a neural 
network: a new concept emerges as the result of 
a number of different learning situations or the 
gradual differentiation of a single concept into 
two or more related ones. Therefore, as activa-
tion spreads from input to output, outputs grade 
according to how well they exemplify the exist-
ing training exemplars. Considering that several 
different prototypes can be stored in the same set 
of weights, a typical single prototype model may 
represent instances as sets of attributes (proper-
ties or features) with some numeric measure 
of both the importance of the attribute to that 
concept (sometimes called its weight) and the 
extent to which the attribute is present. In this 
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