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Simulating the Brain

Let’s build an automated archaeologist! 
It is not an easy task. We need a highly complex, 

nonlinear, and parallel information-processing 
“cognitive core” able to explain what the robot 
sees, in terms of causal factors, which not always 
have an observable nature. 

Of course, such a “cognitive core” should 
not run like a human brain. After all, automated 
archaeologists do the same tasks as “human ar-
chaeologists,” but not necessary in the same way. 
Nevertheless, there is some similitude in the basic 
mechanism. My suggestion is that an archaeolo-
gist, human or “artificial,” will perceive archaeo-
logical data and, using some basic principles of 
learning, as those presented in previous chapter, 
will develop ways of encoding these data to make 
sense of perceived world. Consequently, we may 
try to build our artificial archaeologist based on 
the idea of learning and the ability to adapt flex-
ibly epistemic actions to different archaeological 
problems waiting for a solution.

How much should be programmed in its final 
form into such a cognitive core and how much 
will have to be learnt by interacting with some 
environment, including teachers and other agents? 
Projects aiming to develop intelligent systems 

on the basis of powerful and general learning 
mechanisms start from something close to a 
“Tabula rasa,” however, they risk being defeated 
by explosive search spaces requiring evolution-
ary time-scales for success. Biological evolution 
enables animals to avoid this problem by provid-
ing large amounts of “innate“ information in the 
genomes of all species. In the case of humans, 
this seems to include meta-level information 
about what kinds of things are good to learn, 
helping to drive the learning processes as well 
as specific mechanisms, forms of representa-
tion, and architectures to enable them to work. 
Is it possible to use these ideas for building an 
“intelligent” machine?

Like its human counterpart, the cognitive core 
of our automated archaeologist should be made 
of specialized cells called neurons (Figure 4.1). 
Artificial and biological neurons are relatively 
similar, and both have the same parts, also called 
the cell body, axon, synapse, and dendrite (Bechtel 
& Abrahamson, 1991; Dawson, 2004; Ellis & 
Humphreys, 1999; O’Reilly & Munakata, 2000; 
Quinlan, 1991). 

Each neuron connects as well as accepts con-
nections from many other neurons, configuring 
a network of neurons. Those connections are 
implemented by means of dendrites, while syn-
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apses are a gateway linked to dendrites coming 
from other neurons. 

We can think about the essential function of 
each neuron in the network from a computational 
perspective in terms of a detector. First, a detector 
needs inputs that provide the information on which 
it bases its detection. In human brain, information 
is expressed in the timing and the frequency neu-
rons communicate among them through electrical 
pulses. By combining or integrating activation 
signals or pulses over all the incoming connec-
tions (dendrites), each neuron creates some sort 
of aggregate measure. As a result, the neuron 
produces a new composite signal, the output, 
transmitted to other neurons, continuing the infor-
mation-processing cascade through a network of 
interconnected neurons (Figure 4.2). The chaining 
of multiple levels of detectors can lead to more 
powerful and efficient detection capabilities than 
if everything had to work directly from the raw 
sensory inputs. However, this chaining implies 
that the transformation operation is complex 
because different signals arrive from different 
sources through different connections, and each 

connection modifies the information in a particular 
way. This style of computing—transforming one 
pattern into another by passing it through a large 
configuration of synaptic connections—is called 
parallel distributed processing. As the original 
input pattern distributed across many neurons 
pass inward from one specialized neural popula-
tion to the next, and to the next and the next, the 
original pattern is progressively transformed at 
each stage by the intervening configuration of 
synaptic configurations. 

On a neural network, the overall pattern of si-
multaneous activation levels across the assembled 
neurons of a given population is the primary unit 
of representation, and the primary vehicle of se-
mantic content. Such patterns are often referred 
to as “activation vectors” because they can be 
usefully and uniquely characterized by a sequence 
of n numbers, where n = the number of neurons in 
the representing population. Consequently, con-
cepts may be represented as ephemeral patterns 
of activation across an entire set of units rather 
than as individuated elements or symbols. These 
stable patterns then determine further process-

Figure 4.1. Schematic representation of a neuron
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