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Computer Systems that Learn
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Inverse Reasoning

Inverse problems are among the most challenging 
in computational and applied science and have been 
studied extensively (Bunge, 2006; Hensel, 1991; 
Kaipio & Somersalo, 2004; Kirsch, 1996; Pizlo, 
2001; Sabatier, 2000; Tarantola, 2005; Woodbury, 
2002). Although there is no precise definition, the 
term refers to a wide range of problems that are 
generally described by saying that their answer is 
known, but not the question. An obvious example 
would be “Guessing the intentions of a person 
from her/his behavior.” In our case: “Guessing 
a past event from its vestiges.” In archaeology, 
the main source for inverse problems lies in the 
fact that archaeologists generally do not know 
why archaeological observables have the shape, 
size, texture, composition, and spatiotemporal 
location they have. Instead, we have sparse and 
noisy observations or measurements of percep-
tual properties, and an incomplete knowledge of 
relational contexts and possible causal processes. 
From this information, an inverse engineering 
approach should be used to interpret adequately 
archaeological observables as the material con-
sequence of some social actions. 

A naïve solution would be to list all possible 
consequences of the same cause. This universal 
knowledge base would contain all the knowledge 
needed to “guess” in a rational way the most 

probable cause of newly observed effects. This 
way of solving inverse problems implies a kind 
of instance-based learning, which represents 
knowledge in terms of specific cases or experi-
ences and relies on flexible matching methods 
to retrieve these cases and apply them to new 
situations. This way of learning, usually called 
case-based learning, is claimed to be a paradigm 
of the human way of solving complex diagnostic 
problems in domains like archaeology. To act as a 
human expert, a computer system needs to make 
decisions based on its accumulated experience 
contained in successfully solved cases. Descrip-
tions of past experiences, represented as cases, 
are stored in a knowledge base for later retrieval. 
When the computer sensor perceives a new case 
with similar parameters, the system searches for 
stored cases with problem characteristics similar 
to the new one, finds the closest fit, and applies 
the solutions of the old case to the new case. Suc-
cessful solutions are tagged to the new case and 
both are stored together with the other cases in the 
knowledge base. Unsuccessful solutions also are 
appended to the case base along with explanations 
as to why the solutions did not work.

The suggestion that the intelligent machine 
should define causal events in terms of the ob-
servation of a repeated series of similar events 
typically relies on a kind of regularity assump-
tion demanding that ‘similar problems have 
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similar solutions’ (Hüllermeier, 2007; Kolodner, 
1993). In other words, a learning machine can be 
broadly defined as any device whose actions are 
influenced by past experiences, so that learning 
procedures changes within an agent that over time 
enable it to perform more effectively within its 
environment (Arkin, 1998). The idea is that once 
a system has a rule that fits past data, if the future 
is similar to the past, the system will make correct 
predictions for novel instances (Alpaydin, 2004). 
This mechanism implies the search for maximal 
explanatory similarity between the situation being 
explained and some previously explained scenario 
(Falkenheimer, 1990). 

The trouble is that in most real cases, there 
are infinite observations that can be linked to a 
single social action, making them impossible to 
list by extension. Even the most systematic and 
long-term record keeping is unlikely to recover 
all the possible combinations of values that can 
arise in nature. Thus, the learning task becomes 
one of finding some solution that identifies es-
sential patterns in the samples that are not overly 
specific to the sample data. Added complications 
arise because any inferential task is often fraught 
with uncertainty. From an analytical perspective, 
this means that it is quite possible that two similar 
or even identical samples of prior cases will fall 
into different classes because there may be ambi-
guity within the learning sample. If many of our 
samples are ambiguous for a given set of features, 
we must conclude that these features have poor 
explanatory power, and no good solution to the 
problem may be possible with them alone.

Although we cannot follow the case-based ap-
proach in a real research situation, it suggests that 
an inverse problem can only be solved if there is 
some prior information about the necessary cause-
effect mapping. In other words, the automated 
archaeologist needs a record of past experiences 
linking the observed material effects with their 
cause. It should learn a rule for grouping observ-
able archaeological features in virtue of which they 
belong to sets of material effects of the same social 

action. Obviously, the intelligent machine has not 
enough with rules linking properties observed to 
co-occur in the instances. We should not forget 
that, in archaeology we deal with events and not 
with objects. Consequently, what our automated 
archaeologist should learn is not a category of 
similar objects, but the description of a causal 
event. The task is to find perceptual properties 
that are coherent across different realizations of 
the causal process. 

Robots can potentially learn how to behave 
either by modifying existing behaviors (adapta-
tion) or by learning new ones. This type of learn-
ing can be related to Piaget’s theory of cognitive 
development, in which assimilation refers to the 
modification or reorganization of the existing 
set of available behaviors, and accommodation 
is the process involved with the acquisition of 
new behaviors. Robots can also learn how to 
sense correctly by either learning where to look 
or determining what to look for.

For instance, the machine will understand 
what a house, a castle, a burial, a tool are when 
it learns how a prototypical house, a prototypical 
castle, a prototypical burial, a prototypical tool 
have been made, under which social and economic 
conditions they have existed. Through learning, 
the automated archaeologist will build a model 
predicting features that can be perceived in the 
archaeological record. The automated archaeolo-
gist may not be able to identify the causal process 
completely, but it can construct a good and useful 
approximation. That approximation may not ex-
plain everything, but may still be able to account 
for some part of the data. Although identifying 
the complete process may not be possible, an in-
telligent machine can still detect certain patterns 
or regularities. 

This is exactly what philosophers of science 
have called induction (Bunge, 2006; Genesareth 
& Nilsson, 1987; Gibbins, 1990; Gillies, 1996; 
Holland et al., 1986, Langley & Zytkow, 1989; 
Williamson, 2004; Tawfik, 2004). It can be de-
fined as the way of connecting two predicates 
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