Selecting Secure Web Applications Using Trustworthiness Benchmarking

Afonso Araújo Neto, University of Coimbra, Portugal
Marco Vieira, University of Coimbra, Portugal

ABSTRACT

The multiplicity of existing software and component alternatives for web applications, especially in open source communities, has boosted interest in suitable benchmarks, able to assist in the selection of candidate solutions, concerning several quality attributes. However, the huge success of performance and dependability benchmarking contrasts the small advances in security benchmarking. Traditional vulnerability/attack detection techniques can hardly be used alone to benchmark security, as security depends on hidden vulnerabilities and subtle properties of the system and its environment. A comprehensive security benchmarking process should consist of a two-step process: elimination of flawed alternatives followed by trustworthiness benchmarking. In this paper, the authors propose a trustworthiness benchmark based on the systematic collection of evidences that can be used to select one among several web applications, from a security point-of-view. They evaluate this benchmark approach by comparing its results with an evaluation conducted by a group of security experts and programmers. Results show that the proposed benchmark provides security rankings similar to those provided by human experts. In fact, although experts may take days to gather the information and rank the alternative web applications, the benchmark consistently provides similar results in a matter of few minutes.

Keywords: Benchmarking, Security, Trust-Based Metrics, Trustworthiness, Web Applications

INTRODUCTION

Due to the increasing diversity of web applications, systems and components, system administrators and developers have nowadays the chance to select the software that best fit their needs based on quality attributes such as performance, usability, and security (Barbacci, 2003). However, as several types and brands of operating systems, web servers, database management systems (DBMS), and other classes of applications become available, selecting the most appropriate one(s) becomes less and less trivial. In consequence, the interest in methods to accomplish fair and representative comparison among software and systems concerning these various attributes has grown considerably (Bondavalli, 2009).

A benchmark is a standard procedure that allows assessing and comparing systems or components according to specific characteris-
tics (e.g., performance, availability, security) (Gray, 1993). Computer industry holds a re-
puted infrastructure for performance evaluation, where the Transaction Processing Performance
Council (TPC) (http://www.tpc.org) benchmarks are recognized as one of the most suc-
cessful benchmarking initiatives of the overall computer industry. Furthermore, the concept
of dependability benchmarking has gained
ground in the last few years, having already led
to the proposal of dependability benchmarks
for operating systems, web servers, databases
and transactional systems in general (Kanoun
& Spainhower, 2005). Security, however, has
been largely absent from previous efforts, in a
clear disparity to performance and dependabil-
ity. Theoretically, a security benchmark would
provide a metric (or small set of metrics) able to
characterize the degree to which security goals
are met in the system under testing (Payne,
2006), allowing developers and administrators
to compare alternatives and make informed
decisions. No clear methodology to accomplish
this has been proposed so far.

Traditional security metrics are hard to
define and compute (Torgerson, 2007), as they
involve making isolated estimations about the
ability of an unknown individual (e.g., a hacker)
to discover and maliciously exploit an unknown
system characteristic (e.g., a vulnerability).
While techniques to find, correct and prevent
actual vulnerabilities flourish in the research
community (Zanero, Carettoni, & Zanchetta,
2005), the lack of accurate and representa-
tive security metrics makes the conception of
security benchmarking an extremely difficult
task (Bondavalli, 2009).

An alternative way to tackle this problem is
to look for metrics that systematize and
summarize the trustworthiness that can be
justifiably put in a system or application. In-
stead of quantifying absolute security factors,
trust-based metrics are grounded on the idea
of quantifying the evidences available regard-
ing the trustworthiness that one can put in the
assessed application. However, as trust does
not necessarily provide guarantees, security
benchmarking can only be accomplished as a
twofold process, with trustworthiness being the
metric used for selecting among non-obviously
flawed alternatives. In other words, a reliable
benchmarking approach should provide a set
of security guarantees by forcing the systems
under evaluation to pass a set of basic security
assessments before considering the trustworthi-

tness aspect to support the final selection (e.g., in
a web application benchmarking campaign, no
application should present actual vulnerabilities
detectable during testing; the ones that do not
present vulnerabilities are then ranked using a
process like the one proposed in this paper).

Trust-based metrics allow characterizing
“the degree to which security goals are met in
the given system or component” by summarizing
the amount of protection that it has in terms of
security mechanisms, processes, configurations,
procedures and behaviors. In the web context,
these metrics can be actually used in several
scenarios, including:

- **Comparing the trustworthiness of alternative web applications.** This is extremely
 useful for system administrators when selecting, from a set of alternative solu-
 tions that implement the same high-level requirements, the one that offers more
 guarantees in terms of security (based on the security evidences available).

- **Comparing the trustworthiness of alternative software components.** In a devel-
 opment environment, this is relevant for developers to select the most trustworthy
 software components to be integrated in an application, especially when considering
 component-based development (Crnkovic, Chaudron, & Larsson, 2006).

- **Redirecting the web application development effort.** By comparing the software
 components developed in a project, it is possible to identify the ones that require
 more attention (e.g., testing and rework) in terms of security. This allows effectively
 managing the development effort and is, obviously, of utmost importance in the
 context of large complex projects.
Related Content

Semantic Matchmaking and Decision Support System for Dependable Supplier Selection in the Extended Enterprise Supply Chain
www.irma-international.org/article/semantic-matchmaking-decision-support-system/53130/

Towards a Rational Technology Approach: Considerations for Building Trust in B2B E-Commerce
www.irma-international.org/chapter/towards-rational-technology-approach/60592/

Mobile Trusted Computing Based on MTM
www.irma-international.org/article/mobile-trusted-computing-based-mtm/51603/

How Trust and Reputation-Based Collaboration Impact Wireless Sensor Network Security
www.irma-international.org/chapter/trust-reputation-based-collaboration-impact/39386/

A Framework for Studying the Problem of Trust in Online Settings
www.irma-international.org/article/framework-studying-problem-trust-online/51600/