
264

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 16

INTRODUCTION

One of the central problems in software engineer-
ing is the inherited complexity. The quantification
and measurement of functional complexity of
software systems have been a persistent fundamen-
tal problem in software engineering (Hartmanis

and Stearns, 1965; Basili, 1980; Kearney et al.,
1986; Melton, 1996; Fenton and Pfleeger, 1998;
Lewis and Papadimitriou, 1998; Wang, 2003b,
2007a). The taxonomy of the complexity and
size measures of software can be classified into
the categories of computational complexity (time
and space) (Hartmanis, 1994; McDermid, 1991),

Yingxu Wang
University of Calgary, Canada

On the Cognitive Complexity of
Software and its Quantification

and Formal Measurement

ABSTRACT

The quantification and measurement of functional complexity of software are a persistent problem in
software engineering. Measurement models of software complexities have been studied in two facets
in computing and software engineering, where the former is machine-oriented in the small; while the
latter is human-oriented in the large. The cognitive complexity of software presented in this paper is a
new measurement for cross-platform analysis of complexities, functional sizes, and cognition efforts of
software code and specifications in the phases of design, implementation, and maintenance in software
engineering. This paper reveals that the cognitive complexity of software is a product of its architectural
and operational complexities on the basis of deductive semantics. A set of ten Basic Control Structures
(BCS’s) are elicited from software architectural and behavioral modeling and specifications. The cogni-
tive weights of the BCS’s are derived and calibrated via a series of psychological experiments. Based on
this work, the cognitive complexity of software systems can be rigorously and accurately measured and
analyzed. Comparative case studies demonstrate that the cognitive complexity is highly distinguishable
for software functional complexity and size measurement in software engineering.

DOI: 10.4018/978-1-4666-0261-8.ch016

265

On the Cognitive Complexity of Software and its Quantification and Formal Measurement

symbolic complexity (Lines of Code (LOC))
(Halstead, 1977; Albrecht and Gaffney, 1983;
McDermid, 1991), structural complexity (control
flow, cyclomatic) (McCabe, 1976; Zuse, 1977),
functional complexity (function points, cognitive
complexity) (Albrecht, 1979; Wang, 2007a; Wang
and Shao, 2003).

The most simple and intuitive measure of
software complexity is the symbolic complexity,
which is conventionally adopted as a measure in
term of Lines of Code (LOC) (Halstead, 1977;
Albrecht and Gaffney, 1983; McDermid, 1991).
However, the functional complexity of software
is so intricate and non-linear, which is too hard to
be measured or even estimated in LOC. In order
to improve the accuracy and measurability, Mc-
Cabe proposed the cyclomatic complexity mea-
sure (McCabe, 1976) based on Euler’s theorem
(Lipschutz and Lipson, 1997) in the category of
structural complexity. However, it only considered
the internal loop architectures of software systems
without taking into account of the throughput
of the system in terms of data objects and many
other important internal architectures such as the
sequential, branch, and embedded constructs.
Because the linear blocks of code are oversimpli-
fied as one unit as in graph theory, the cyclomatic
complexity is not sensitive to linear structures and
external data complexity as well as their impact
on the basic structures. Albrecht (1979) intro-
duced the concept of function point of software
(Albrecht, 1979), which is a weighted product
of a set of functional characteristics of software
systems. However, the physical meaning of a unit
function point is not rigorously modeled except
a wide range of empirical studies. The cognitive
complexity of software systems is introduced as
a measure for the functional complexity in both
software design and comprehension, which con-
sists of the architectural and operational complexi-
ties. The cognitive complexity provides a novel
and profound approach to explain and measure
the functional complexity of software as well as
the effort in software design and comprehension.

The new approach perceives software functional
complexity as a measure of cognitive complex-
ity for human creative artifacts, which considers
the effect of both internal structures of software
and the I/O data objects under processing (Wang,
2007a; Wang and Shaw, 2003).

This paper presents a cognitive functional
complexity of software as well as its mathematical
models and formal measurement. The taxonomy
and related work of software complexity mea-
surement are explored systematically. A generic
mathematical model of programs is created and
the relative cognitive weights of fundamental
software structures known as the Basic Control
Structures (BCS’s) are empirically calibrated
based on a series of psychological experiments.
The cognitive complexity of software systems is
formally modeled as a product of the architectural
and operational complexities of software. A set
of comparative case studies is presented on ap-
plications of cognitive complexity in software
engineering, which leads to a series of important
findings on the basic properties of software
cognitive complexity and its quantification and
measurement.

TAXONOMY OF SOFTWARE
COMPLEXITIES IN COMPUTING
AND SOFTWARE ENGINEERING

The measurement models of software complexities
have been studied in two facets in computing in the
small and software engineering in the large. The
orientation of software engineering complexity
theories puts emphases on the problems of func-
tional complexity that are human cognition time
and workload oriented. While the computational
complexity theories are focused on the problems
of high throughput complexity that are computing
time efficiency centered. In other words, software
engineering measures system-level complexities,
while computational science measures algorithmic
complexities.

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/cognitive-complexity-software-its-

quantification/65134

Related Content

Factors Determining the Success of eHealth Innovation Projects
Antonio Hidalgo, Nerea Pérezand Isaac Lemus-Aguilar (2022). International Journal of Software Science

and Computational Intelligence (pp. 1-22).

www.irma-international.org/article/factors-determining-the-success-of-ehealth-innovation-projects/309709

Sign Language Translation Systems: A Systematic Literature Review
Ankith Boggaram, Aaptha Boggaram, Aryan Sharma, Ashwin Srinivasa Ramanujanand Bharathi R. (2022).

International Journal of Software Science and Computational Intelligence (pp. 1-33).

www.irma-international.org/article/sign-language-translation-systems/311448

CSMA/CA MAC Protocol with Function of Monitoring based on Binary Tree Conflict Resolution

for Cognitive Radio Networks
Yifan Zhao, Shengjie Zhou, Hongwei Ding, Shaowen Yao, Zhijun Yangand Qianlin Liu (2016). International

Journal of Software Science and Computational Intelligence (pp. 35-51).

www.irma-international.org/article/csmaca-mac-protocol-with-function-of-monitoring-based-on-binary-tree-conflict-

resolution-for-cognitive-radio-networks/172115

Metaheuristic- and Statistical-Based Sampling in Optimization
Yoel Tenne (2018). Applied Computational Intelligence and Soft Computing in Engineering (pp. 84-104).

www.irma-international.org/chapter/metaheuristic--and-statistical-based-sampling-in-optimization/189317

Crowdfunding to improve Environmental Projects’ Logistics
Carlos Alberto Ochoa Ortiz Zezzatti, Sandra Bustillos, Yarira Reyes, Alessandra Tagliarducci-Tcherassiand

Rubén Jaramillo (2012). Logistics Management and Optimization through Hybrid Artificial Intelligence

Systems (pp. 287-309).

www.irma-international.org/chapter/crowdfunding-improve-environmental-projects-logistics/64926

http://www.igi-global.com/chapter/cognitive-complexity-software-its-quantification/65134
http://www.igi-global.com/chapter/cognitive-complexity-software-its-quantification/65134
http://www.irma-international.org/article/factors-determining-the-success-of-ehealth-innovation-projects/309709
http://www.irma-international.org/article/sign-language-translation-systems/311448
http://www.irma-international.org/article/csmaca-mac-protocol-with-function-of-monitoring-based-on-binary-tree-conflict-resolution-for-cognitive-radio-networks/172115
http://www.irma-international.org/article/csmaca-mac-protocol-with-function-of-monitoring-based-on-binary-tree-conflict-resolution-for-cognitive-radio-networks/172115
http://www.irma-international.org/chapter/metaheuristic--and-statistical-based-sampling-in-optimization/189317
http://www.irma-international.org/chapter/crowdfunding-improve-environmental-projects-logistics/64926

