Chapter 9
Phenomenology:
The Qualitative Core of Reasoning

ABSTRACT

Relational Thinking Styles is traced to Peirce’s phenomenology, his logic and concept of abduction. A process similar to Peirce’s descriptions of this phenomenological sort of proto-abduction is demonstrated and observed by means of the Davis Non-Verbal Assessment of inferencing styles. Noticing, or failing to notice, similarities and differences among things resides at the core of reasoning; all similarities and differences are discerned based upon the qualities of things, for there is no possibility of discernment without qualities to discern among. A mind cannot think about what it does not notice or has not previously noticed. Individuals become aware of similarities between things and ideas order and organize qualities, or properties, which distinguish one thing from another. Peirce’s practice of phenomenology as a whole comprises the qualitative core of reasoning. Since these three universal categories underlie the structure of Peirce’s philosophy as a whole, they underlie his logic as well. In particular, these phenomenological categories are essential for understanding his concept of abduction and, therefore, Peirce’s Logic.

INTRODUCTION

Philosopher Charles Sanders Peirce’s concept of phenomenology (the study of appearances) comprises the qualitative core of reasoning. A mind cannot reason about what it does not notice or has not previously noticed. Individuals become aware of similarities and differences between things and ideas based upon the qualities, or properties, distinguishing one thing (or one degree of something) from another. In this sense, everyone is a phenomenologist of sorts, though not everyone engages with the qualities of experience in the
same way. These differences are not related to differences in purpose or content.

The DNV identifies fundamental differences among individuals in their habitual approaches to engaging with the three phenomenological categories of consciousness. The Relational Thinking Styles (RTS) model identifies four distinct differences in the way people habitually engage with these three categories of experience; differences that enable the observation and determination of inferencing patterns (see Chapter 3).

Peirce identifies phenomenology (the first of his three divisions of philosophy) as the “Doctrine of Categories” (Peirce, 1932, Vol. 1, para. 280), three phenomenological categories that are fundamental to everything else in his philosophy—including his logic (Peirce, 1932, Vol. 1, para. 186). Peirce claims that the business of phenomenology is to unravel the tangle of everything that appears (whether in the world or to the mind) and to “wind it into distinct forms” (Peirce, 1932, Vol. 1, para. 280). He contends that making “the ultimate analysis of all experiences is the first task” of philosophy (Peirce, 1932, Vol. 1, para. 280).

Many who attempt to read Peirce become confused by the variety of terms he uses to identify his categories. To a newcomer, it might appear as though Peirce is talking about several different sets of categories. He refers to phenomenology as the “Doctrine of Categories” and to the categories as “phenomenological categories,” (Peirce, 1932, Vol. 1, para. 280). He calls them “categories of being” (Peirce, 1933, Vol. 4, para. 157), “categories of consciousness” (Peirce, 1932, Vol. 1, para. 377), and “universal categories” (Peirce, 1932, Vol. 1, para. 526). These terms all refer to the same three categories.

When Peirce “unraveled the tangle of everything,” he then wound it into three distinct forms, or categories, which he early on calls “quality,” “relation,” and “synthesis” (Peirce, 1932, Vol. 1, para. 378). Later, because of the universal nature of these categories, he begins calling them by the terms “Firstness,” “Secondness,” and “Thirdness” (Peirce, 1932, Vol. 1, para. 300-353), a sort of linguistic shorthand. Since these categories refer to all phenomena, they may seem to be multiple sets of categories because they maintain their three-ness form within each category, regardless of what they are describing, all the way from the most abstract and general applications to the most specific.

The purpose of this chapter is to familiarize readers with Peirce’s phenomenology and its relationship to the RTS model. In order to better understand Peirce’s logic of discovery and the role creative abductive inference plays, it is important to grasp, if only in outline, Peirce’s system of classification of the sciences.

BACKGROUND

Peirce’s Classification of the Sciences

The purpose for discussing Peirce’s classification of the sciences here is to provide a smattering of background about the way he envisions and organizes the interrelationships among the sciences. This organization emphasizes the relative importance of phenomenology (which he places second only to mathematics) to the structure of his philosophy as a whole (Peirce, 1932, Vol. 1, para. 183). Peirce even considers phenomenology fundamental to his concept of abduction: “The categories furnish the definition of abduction, from which follows its mode of justification, and from this again its rules” (Peirce, 1998). RTS and the DNV, the tool that identifies inferencing habits in individuals, also rely upon Peirce’s three phenomenological categories.

Peirce constructs two classifications of the sciences (one an outline, the other detailed), each with minor modifications and, in some cases, using different terminology (Peirce, 1932, Vol. 1, para. 180 & 203-283). However, these differences do
Related Content

Towards the Cognitive Informatics of Natural Language: The Case of Computational Humor
[www.irma-international.org/article/towards-the-cognitive-informatics-of-natural-language/103126/](www.irma-international.org/article/towards-the-cognitive-informatics-of-natural-language/103126/)

Event Detection and Classification for Fiber Optic Perimeter Intrusion Detection System
[www.irma-international.org/article/event-detection-and-classification-for-fiber-optic-perimeter-intrusion-detection-system/236687/](www.irma-international.org/article/event-detection-and-classification-for-fiber-optic-perimeter-intrusion-detection-system/236687/)

A Computational Simulation of the Cognitive Process of Children Knowledge Acquisition and Memory Development
[www.irma-international.org/chapter/computational-simulation-cognitive-process-children/72286/](www.irma-international.org/chapter/computational-simulation-cognitive-process-children/72286/)

Voice and Space: Agency of the Acousmêtre in Spatial Design
[www.irma-international.org/chapter/voice-space-agency-acousmêtre-spatial/18679/](www.irma-international.org/chapter/voice-space-agency-acousmêtre-spatial/18679/)

Modified Gabor Wavelets for Image Decomposition and Perfect Reconstruction
[www.irma-international.org/article(modified-gabor-wavelets-image-decomposition/37572/](www.irma-international.org/article(modified-gabor-wavelets-image-decomposition/37572/)}