
150

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

INTRODUCTION

The invention of automated machines dates back
to seventeenth century. These automated machines
were run by mechanical and electrical control
mechanisms and performed simple tasks. The
advent of electronics based computing machines
increased the potential of these machines mak-

ing them complex. The concept of software has
manifested in all forms of computing machines
whether mechanical, electrical or electronic, being
the lifeline thereof.

As the computer systems became more pow-
erful and smaller in size, their usage diversified
from scientific computations to business systems.
It wasn’t long before they were used to automate
various devices such as Phones, Airplanes and
Cruise Control Systems in cars. Today most of

Amit Goel
RMIT University, Australia

The Philosophy of
Software Architecture

ABSTRACT

Computer Software Intensive systems have become ingrained in our daily life. Apart from obvious scien-
tific and business applications, various embedded devices are empowered with computer software. Such
a diverse application of Computer Software has led to inherent complexity in building such systems. As
civilizations moved forward, the concept of architectural thinking and practice was introduced to grapple
with the complexity and other challenges of creating buildings, skyscrapers, townships, and cities. The
Practice of Software Architecture is an attempt to understand and handle similar challenges in Software
Intensive Systems. This paper introduces software architecture and the underlying philosophy thereof.
This paper provokes a discussion around the present and future of Software Architecture. The authors
discuss skills and roles of Software Architect.

DOI: 10.4018/978-1-4666-0336-3.ch013

151

The Philosophy of Software Architecture

our devices are embedded with a computer of one
kind or another. The diverse usage, heterogeneous
systems and structure of computers systems lead
to further complexity for software, which has
now become the essential part of any computer
system, large or small.

In order to manage complexity, a journey of
abstractions was observed which passed through
machine language (language of 0 and 1), assembly
language (language of instructions and mnemon-
ics such as add, load), high level languages the
(C, C++, Java) and fourth generation (4GL) or
domain specific languages (DSL). From another
viewpoint this complexity was being addressed by
using concepts such as top-down and bottom-up
software development approach. The theory of
software design and design patterns was formed
during these developments. As the complexity
increased, the need was felt to make decisions at
much higher levels of abstraction, and to make
strategic decisions before making tactical (as in
design) or operational decisions (as in code). The
theory of Software Architecture started taking
shape in order to manage the complexity at higher
levels of abstraction and to embed strategic deci-
sion making in the building of software systems.

In this paper we explore few fundamental
thoughts on software architecture to provoke
discussion around some basic questions. We start
by discussing the meaning and definition of the
term ‘Software Architecture’ in section 2. We ask
“Why do we need to do Software Architecture?”
in section 3 and hence outline the rationality for
doing the software architecture. Section 4 dis-
cusses what skills and qualities are required by
a software engineer engaged in the practice of
software architecture. Section 5 discusses the soft-
ware architecture metaphor and how is it similar
to or different from art, engineering and science.
This section leads us to think whether software
architecture is an art, science or engineering or a
mix of these. We conclude by providing a sum-
mary and future direction.

This paper covers few key issues about philoso-
phy of software architecture in breadth. Hence the
discussion is brief. However, we point the reader
to various references to dive deeper into details of
various concepts presented in this paper.

The Pursuit of Software Architecture

Software architecture is a generally overused
term. However, if we ask someone about software
architecture generally the conversation is like the
one below:

“What is software architecture?”

“The set of decisions an architect makes.”

“What are these decisions?”

“The architecturally significant ones”

“Ok. What is architecturally significant?”

“The architect decides”.

Kent Beck articulated such situation humor-
ously that “Software architecture is what software
architects do and therefore by implication what
software architects do is, well, they architect
software” (Booch, 2006).

Let us first understand the meaning of word
architecture in context of computer software.
Software engineering community has a common
understanding that architecture enables trans-
formation of requirements to code or working
application. Yet another view is that architecture
is the glue between Business and IT and closes
the Business-IT alignment gap. Hence software
architecture is positioned in the middle of require-
ments/code (Figure 1) or business/IT (Figure 2).
We do not deny the importance of architecture in
both these roles, but mainly software architecture
sits in the middle of strategy and implementation
(Figure 3). Strategy is the owner’s vision and

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/philosophy-software-architecture/63952

Related Content

How Thick Is Your Client?
Ed Youngand Michael Jessopp (2010). International Journal of Web Portals (pp. 1-11).

www.irma-international.org/article/thick-your-client/44692

Open-Source Online Knowledge Portals for Education
Phillip Ollaand Rod Crider (2007). Encyclopedia of Portal Technologies and Applications (pp. 684-688).

www.irma-international.org/chapter/open-source-online-knowledge-portals/17948

Privacy Preserving Data Portals
Benjamin C.M. Fung (2007). Encyclopedia of Portal Technologies and Applications (pp. 842-847).

www.irma-international.org/chapter/privacy-preserving-data-portals/17974

The Philosophy of Software Architecture
Amit Goel (2012). Enhancing Enterprise and Service-Oriented Architectures with Advanced Web Portal

Technologies (pp. 150-161).

www.irma-international.org/chapter/philosophy-software-architecture/63952

Interview: Portal Experiences of Not-for-Profit Organisations
Greg Adamsonand Rick Noble (2010). International Journal of Web Portals (pp. 45-51).

www.irma-international.org/article/interview-portal-experiences-not-profit/49566

http://www.igi-global.com/chapter/philosophy-software-architecture/63952
http://www.irma-international.org/article/thick-your-client/44692
http://www.irma-international.org/chapter/open-source-online-knowledge-portals/17948
http://www.irma-international.org/chapter/privacy-preserving-data-portals/17974
http://www.irma-international.org/chapter/philosophy-software-architecture/63952
http://www.irma-international.org/article/interview-portal-experiences-not-profit/49566

