
278

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.7

1. INTRODUCTION

The programming and the architecture of real-
time parallel computing for on-chip multicore
computers are based on either general computing

solutions or custom solutions. General solutions,
usually based on a cache-coherent programming
model, are not low cost solution for real-time ap-
plications (Hennessey & Patterson, 2003). Custom
solutions are application-specific and suitable only
for a selection of applications, such as LeoCore

Dake Liu
Linköping University, Sweden

Joar Sohl
Linköping University, Sweden

Jian Wang
Linköping University, Sweden

Parallel Programming and
Its Architectures Based

on Data Access Separated
Algorithm Kernels

ABSTRACT

A novel master-multi-SIMD architecture and its kernel (template) based parallel programming flow is
introduced as a parallel signal processing platform. The name of the platform is ePUMA (embedded
Parallel DSP processor architecture with Unique Memory Access). The essential technology is to sepa-
rate data accessing kernels from arithmetic computing kernels so that the run-time cost of data access
can be minimized by running it in parallel with algorithm computing. The SIMD memory subsystem
architecture based on the proposed flow dramatically improves the total computing performance. The
hardware system and programming flow introduced in this article will primarily aim at low-power
high-performance embedded parallel computing with low silicon cost for communications and similar
real-time signal processing.

DOI: 10.4018/978-1-61350-456-7.ch2.7

279

Parallel Programming and Its Architectures Based on Data Access Separated Algorithm Kernels

of Coresonic (Nilsson, Tell & Liu, 2008). Parallel
programming based on architectures with local
scratchpad memories associated with ultra large
register files was proposed by Flachs et al., 2006,
Khailany et al., 2008. A large register file supports
flexible parallel programming and consumes much
power. Parallel computing based on a VLIW DSP
processor has been well used in industry (Tretter,
2003). However, VLIW based DSP processors
cannot offer silicon efficiency and low power.

Currently master (host)-multi-SIMD based
architecture is the main driver of embedded DSP
computing. Several hundreds GOPS computing
performance offers great opportunities for com-
putationally demanding applications, yet some
applications cannot be supported because of the
high power consumption. A majority share of
power is consumed during data access for paral-
lel computing. Excessive and redundant parallel
data access drives the clock frequency to a very
high rate, so that the power consumption cannot
be reduced by lowering the supply voltage.

1.1. Essential Glossary

OpenCL

OpenCL (Open Computing Language) (Khronos,
2008) is a framework for writing programs that
execute across heterogeneous platforms consisting
of CPUs, GPUs, and other processors.

Kernel

The definition of a kernel by OpenCL: A kernel
is a function declared in a program and executed
on an OpenCL device. A kernel is identified by
the __kernel qualifier.

From control complexity: A kernel is a
subroutine executed independently in a SIMD
or in an accelerator without interwork to its host
machine or other SIMD.

From data complexity: Kernel is a computa-
tion that uses single the regular memory access

pattern for each operand array (using only one
addressing kernel / template).

From algorithm complexity: A kernel shall
handle only one algorithm or part of an algorithm
which can be implemented using only one loop.

Cluster

A cluster here consists of one master (host) ma-
chine and several SIMD machines.

Total data access cost in SIMD:
The run time cost of (1) loading data from the

main memory to the SIMD local vector memory,
(2) loading data from SIMD local vector memory to
the vector register file, and (3) storing results from
SIMD local vector memory to the main memory.

Data permutation:
The data permutation here in this article is

used to select each piece of data in a vector and to
store it in a memory block of the vector memory.
It can be conducted during the data loading from
the main memory to the local vector memory. The
purpose of data permutation is to distribute data
to different memory blocks in a vector memory
so that multiple data values can be used in parallel
simultaneously.

Conflict free memory access:
Based on data permutation, data is selected to

be stored in different memory blocks. Multiple
data can be accessed in parallel without conflict,
facilitating parallel computing.

Separated data access kernel:
The data access kernel is separated from its

original algorithm kernel. A kernel carries the data
location information in the main memory and in
the local vector memory. It also specifies the way
that the data in the main memory is collected and
merged into one DMA transaction, and the way
that the data shall be distributed to each block of
the vector parallel memory.

Prolog and Epilog in host:
It is a part of a context; a prolog is used to

introduce a kernel to be executed in a SIMD ma-

17 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/parallel-programming-its-architectures-

based/62448

Related Content

Computer Aided Method Engineering
Ajantha Dahanayake (2001). Computer-Aided Method Engineering: Designing CASE Repositories for the

21st Century (pp. 21-36).

www.irma-international.org/chapter/computer-aided-method-engineering/6873

An Innovative Company in a Smart City: A Sustainable Business Model
Francesca Culassoand Sara Giovanna Mauro (2020). Disruptive Technology: Concepts, Methodologies,

Tools, and Applications (pp. 424-444).

www.irma-international.org/chapter/an-innovative-company-in-a-smart-city/231198

A Review of Literature About Models and Factors of Productivity in the Software Factory
Pedro S. Castañeda Vargasand David Mauricio (2021). Research Anthology on Recent Trends, Tools, and

Implications of Computer Programming (pp. 1911-1939).

www.irma-international.org/chapter/a-review-of-literature-about-models-and-factors-of-productivity-in-the-software-

factory/261109

MOF-Metamodels and Formal Languages
Liliana María Favre (2010). Model Driven Architecture for Reverse Engineering Technologies: Strategic

Directions and System Evolution (pp. 80-77).

www.irma-international.org/chapter/mof-metamodels-formal-languages/49179

Applications of Visual Algorithm Simulation
Ari Korhonen (2012). Computer Engineering: Concepts, Methodologies, Tools and Applications (pp. 546-

563).

www.irma-international.org/chapter/applications-visual-algorithm-simulation/62464

http://www.igi-global.com/chapter/parallel-programming-its-architectures-based/62448
http://www.igi-global.com/chapter/parallel-programming-its-architectures-based/62448
http://www.irma-international.org/chapter/computer-aided-method-engineering/6873
http://www.irma-international.org/chapter/an-innovative-company-in-a-smart-city/231198
http://www.irma-international.org/chapter/a-review-of-literature-about-models-and-factors-of-productivity-in-the-software-factory/261109
http://www.irma-international.org/chapter/a-review-of-literature-about-models-and-factors-of-productivity-in-the-software-factory/261109
http://www.irma-international.org/chapter/mof-metamodels-formal-languages/49179
http://www.irma-international.org/chapter/applications-visual-algorithm-simulation/62464

