
371

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

DOI: 10.4018/978-1-61350-438-3.ch014

Miguel A. de Miguel
Technical University of Madrid, Spain

Emilio Salazar
Technical University of Madrid, Spain

Juan P. Silva
Technical University of Madrid, Spain

Javier Fernandez-Briones
Technical University of Madrid, Spain

Reusable Modelling Tool Assets:
Deployment of MDA Artefacts

ABSTRACT

Model driven development attempts to resolve some common problems of current software architectures
in order to reduce the complexity of software development: i) how to increase the level of abstraction
by centring on software models; ii) how to automate the software development process through the use
of transformations and generators; and iii) how to separate domain, technology, and technological
concerns so as to avoid confusion arising from the combination of different types of concepts. Model
driven development uses two basic solutions to resolve these problems: i) description of specialised
modelling languages and ii) model transformations and mappings. For each domain and technology,
MDSD (Model-Driven Software Development) requires specific MDA (Model Driven Architecture)
artefacts for the definition of specialised languages and transformations that address specific model-
ling languages and platforms. The application of MDSD in a specific domain and technology combines
multiple interdependent MDA technologies (e.g. MOF (Meta-Object Facilities), QVT (Query-View and
Transformation), MOF2Text, UML (Unified Modelling Language) extensions, and OCL (Object Constraint
Language)); MDSD combines these technologies to construct and improve tools that support the model
driven development process adapted to specific domains, technologies, and platforms (e.g. e-commerce,
safety-critical software systems, and SOA (Service Oriented Architecture)).

372

Reusable Modelling Tool Assets

INTRODUCTION

A basic objective of model-driven software
development is to place emphasis on the model
when developing software. This is a change from
the current situation, in that it shifts the role of
models from contemplative to productive. The
goal of model-driven engineering is to define a
complete life-cycle method based on the use of
various models automating a seamless process
from analysis to code generation (Frankel 2003).
This discipline puts all the software artefacts in
the right place (e.g. business models, architectural
models and design patterns) and actively uses
them in order to produce and deploy applications.

Models provide solutions for different types
of problems: i) description of problems and their
concepts, ii) validation of descriptions and con-
cepts represented through checking and analysis
techniques, iii) model transformation and genera-
tion of code, configurations, and documentation.

Separation of concerns avoids the confusion
generated by combining different types of con-
cepts. Model-driven approaches introduce solu-
tions for specialising models for specific concerns
and for interconnecting concerns based on model
transformations. This approach reduces the com-
plexity of models through specialised modelling
activities that are separated. It improves commu-
nications between stakeholders by using models
to support the exchange of information. However,
separation of concerns often requires specialised
modelling languages to describe specific concerns,

and the interoperability of specialised languages
requires tools integration.

MDA proposes a set of languages and technolo-
gies (Miguel et al. 2002) to construct of model-
ling tools that adapt MDSD to specific platforms
(e.g. EJB (Enterprise Java Beans), RTSJ (Real-
Time Java Specification)) and technologies (e.g.
transactions, security). Standards defining such
languages are: MOF (OMG 2006), QVT (OMG
2011), MOF2Text (OMG 2008a), OCL (OMG
2010b), UML (OMG 2009a), UML profiles and
RAS (Reusable Asset Specification) (OMG 2005).
MDSD combines these languages to create artefact
infrastructures, applicable in modelling tools, to
then construct MDSD environments. However
the artefact’s dependence on tool’s infrastructures
makes the artefacts tool-dependent and therefore
application models are also tool-dependent. The
MDA philosophy to avoid platform dependency
based on PIM (Platform Independent Model) and
PSM (Platform Specific Models) is not reflected in
the development of MDA artefacts. For example,
UML modelling-tool facilities, such as profile
registration and support of stereotype applica-
tions based on modelling framework tools (e.g.
EMF (Eclipse Modelling Framework)), make the
profiles and the models that reuse the profiles
tool dependent. When exporting the models, the
profiles must be exported too, and manual adap-
tations must be done within the model, because
the profiles installed in the target tool cannot be
reused. This process requires extensive experi-
ence working with models and is not feasible for
complex models.

The maintenance and evolution of software models require solutions in order to integrate all these MDA
technologies and avoid dependency on their tools. The various kinds of MDA artefacts have interdepen-
dencies (e.g. model transformation and modelling language extensions), which complicate their reuse and
their adaptation to new development environments. This chapter proposes solutions for the integration
of all MDA technologies based on reusable modelling tool assets, and solutions for deploying artefacts
so as to provide modelling tool independence. MDSD must address these problems, because in the near
future, the migration of these developments to new development platforms will be as complex as current
migrations from one specific run-time platform to another.

37 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/reusable-modelling-tool-assets/60728

Related Content

Software Process Model using Dynamic Bayesian Networks
Thomas Schulz, Lukasz Radlinski, Thomas Gorgesand Wolfgang Rosenstiel (2011). Knowledge

Engineering for Software Development Life Cycles: Support Technologies and Applications (pp. 289-310).

www.irma-international.org/chapter/software-process-model-using-dynamic/52889

Unsupervised Estimation of Facial Expression Intensity for Emotional Scene Retrieval in Lifelog

Videos
Shota Sakaue, Hiroki Nomiyaand Teruhisa Hochin (2018). International Journal of Software Innovation (pp.

30-45).

www.irma-international.org/article/unsupervised-estimation-of-facial-expression-intensity-for-emotional-scene-retrieval-in-

lifelog-videos/210453

Proxy-Monitor: An Integration of Runtime Verification with Passive Conformance Testing
Sébastien Salvaand Tien-Dung Cao (2014). International Journal of Software Innovation (pp. 20-42).

www.irma-international.org/article/proxy-monitor/119988

Project Management and Diagramming Software
Rizaldy Rapsing (2013). Software Development Techniques for Constructive Information Systems Design

(pp. 97-109).

www.irma-international.org/chapter/project-management-diagramming-software/75742

Towards Dynamic Semantics for Synthesizing Interpreted DSMLs
Peter J. Clarke, Yali Wu, Andrew A. Allen, Frank Hernandez, Mark Allisonand Robert France (2013).

Formal and Practical Aspects of Domain-Specific Languages: Recent Developments (pp. 242-269).

www.irma-international.org/chapter/towards-dynamic-semantics-synthesizing-interpreted/71822

http://www.igi-global.com/chapter/reusable-modelling-tool-assets/60728
http://www.irma-international.org/chapter/software-process-model-using-dynamic/52889
http://www.irma-international.org/article/unsupervised-estimation-of-facial-expression-intensity-for-emotional-scene-retrieval-in-lifelog-videos/210453
http://www.irma-international.org/article/unsupervised-estimation-of-facial-expression-intensity-for-emotional-scene-retrieval-in-lifelog-videos/210453
http://www.irma-international.org/article/proxy-monitor/119988
http://www.irma-international.org/chapter/project-management-diagramming-software/75742
http://www.irma-international.org/chapter/towards-dynamic-semantics-synthesizing-interpreted/71822

