
164

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

Liliana Favre
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina & Comisión de

Investigaciones Científicas de la Provincia de Buenos Aires, Argentina

Liliana Martinez
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Claudia Pereira
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Software System Modernization:
An MDA-Based Approach

ABSTRACT

System modernization requires the existence of technical frameworks for information integration and
tool interoperation that allow managing new platforms technologies, design techniques, and processes.
The Model Driven Architecture (MDA) is aligned with this requirement. It is an evolving conceptual
architecture to achieve cohesive model-driven technology specifications. MDA distinguishes the follow-
ing models: Computation Independent Model (CIM), Platform Independent Model (PIM), and Platform
Specific Model (PSM). The integration of classical reverse engineering techniques with the MDA ini-
tiative will play a crucial role in software system modernization. In light of these issues, this chapter
describes a framework for MDA-based reverse engineering that integrates static and dynamic analysis,
meta-modeling, and formal specification. The essential idea is to combine static and dynamic analysis
to generate software models (PSM and PIM) from code, and to analyze the consistency of these trans-
formations by using meta-modeling techniques and formal algebraic specification. The chapter shows
how to use reverse engineering to create PSM and PIM (that are expressed in terms of UML models)
from object oriented code. More specifically, the chapter emphasizes the bases of a reverse engineering
approach and describes how to reverse engineer class diagram, state diagram, activity diagram, and
use case diagram within the context of MDA initiative.

DOI: 10.4018/978-1-61350-438-3.ch007

165

Software System Modernization

INTRODUCTION

Reverse Engineering is the process of analyzing
available software artifacts such as requirements,
design, architectures, code or byte code, with the
objective of extracting information and providing
high-level views on the underlying system.

Reverse engineering is an integral part of
the modernization of legacy systems whose ag-
ing can or will have a negative impact on the
economy, finance and society. These systems
include software, hardware, business processes
and organizational strategies and politics. Many
of them may be written for technology which
is expensive to maintain and which may not be
aligned with current organizational politics, how-
ever they resume key knowledge acquired over
the life of an organization. Important business
rules are embedded in the software and, may not
be documented elsewhere and the way in which
legacy systems operate is not explicit. There is a
high risk to replace them because they are generally
business-critical systems (Sommerville, 2004).

Reverse engineering techniques are used as
a mean to design software systems by evolving
existing software systems for the purpose of adapt
them to new requirements or technologies. 20 years
ago, they focused mainly on recovering high-level
architectures or diagrams from procedural code
to face up to problems such as comprehending
data structures or databases or the Y2K problem.
By the year 2000, many different kinds of slicing
techniques were developed and several studies
were carried out to compare them. Basically,
the initial reverse engineering techniques were
based on static analysis and the concept of ab-
stract interpretation, which amounts the program
computations using value descriptions or abstract
values in place of actual computed values. Abstract
interpretation allows obtaining information about
run time behavior without actually having to run
programs on all input data.

When the object oriented languages emerged,
a growing demand for reengineering object

oriented systems appeared on the stage. New
approaches were developed to identify objects
into legacy code (e.g. legacy code in COBOL)
and translate this code into an object oriented
language. Object oriented programs are essentially
dynamic and present particular problems linked
to polymorphism, late binding, abstract classes
and dynamically typed languages. For example,
some object oriented languages introduce concepts
such as the reflection and the possibility of load-
ing dynamically classes, although these mecha-
nisms are powerful, they affect the effectiveness
of reverse engineering techniques. During the
time object oriented programming, the focus of
software analysis moved from static analysis to
dynamic analysis, more precisely static analysis
was complemented with dynamic analysis (Fanta
& Rajlich, 1998; Systa, 2000).

When the Unified Modeling Language (UML)
comes into the world, a new problem was how to
extract higher level views of the system expressed
by different kind of UML diagrams. Relevant
work for extracting UML diagrams (e.g. class
diagram, state diagram, sequence diagram, object
diagram, activity diagram and package diagram)
from source code was developed (Tonella &
Potrich, 2005).

Nowadays, software and system engineering
industry evolves to manage new platform tech-
nologies, design techniques and processes and
a lot of challenges still need to be done. New
technical frameworks for information integration
and tool interoperation such as the Model Driven
Development (MDD) created the need to develop
new analysis tools and specific techniques. MDD
refers to a range of development approaches that
are based on the use of software models as first
class entities. The most well-known is the OMG
standard Model Driven Architecture (MDA), i.e.,
MDA is a realization of MDD (MDA, 2005).

MDA can be viewed as an evolution of OMG
(Object Management Group) standards to support
model centric development increasing the degree
of automation of processes such as source code

34 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-system-modernization/60721

Related Content

Enterprise Content Management System for IT Training
Kelvin Chung Tak Tang, Dickson K. W. Chiu, Agnes Wai Yan Chanand Jeff K. T. Tang (2016). International

Journal of Systems and Service-Oriented Engineering (pp. 32-54).

www.irma-international.org/article/enterprise-content-management-system-for-it-training/173714

Modeling Approach for Integration and Evolution of Information System Conceptualizations
Remigijus Gustas (2013). Frameworks for Developing Efficient Information Systems: Models, Theory, and

Practice (pp. 146-175).

www.irma-international.org/chapter/modeling-approach-integration-evolution-information/76622

Designing Agent-Based Process Systems-Extending the OPEN Process Framework
J. Debenhamand B. Henderson-Sellers (2003). Intelligent Agent Software Engineering (pp. 160-190).

www.irma-international.org/chapter/designing-agent-based-process-systems/24149

Understanding the End User: The Key to Managing End-User Computing
Donald L. Amoroso (2001). Strategies for Managing Computer Software Upgrades (pp. 210-219).

www.irma-international.org/chapter/understanding-end-user/29921

Protein Classification Using N-gram Technique and Association Rules
Fatima Kabli, Reda Mohamed Hamouand Abdelmalek Amine (2018). International Journal of Software

Innovation (pp. 77-89).

www.irma-international.org/article/protein-classification-using-n-gram-technique-and-association-rules/201486

http://www.igi-global.com/chapter/software-system-modernization/60721
http://www.irma-international.org/article/enterprise-content-management-system-for-it-training/173714
http://www.irma-international.org/chapter/modeling-approach-integration-evolution-information/76622
http://www.irma-international.org/chapter/designing-agent-based-process-systems/24149
http://www.irma-international.org/chapter/understanding-end-user/29921
http://www.irma-international.org/article/protein-classification-using-n-gram-technique-and-association-rules/201486

