
119

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

DOI: 10.4018/978-1-61350-116-0.ch006

INTRODUCTION

The premise of this chapter is that most existing
scientific software is of low “quality” from the
point of view of standards of “best practice” in
professional software engineering. Not least be-
cause the development of “quality software” of

that kind, i.e., involving code that is clearly and
manifestly structured, and readily intelligible to
new users through reading the code, is not currently
a priority for scientific research. Those involved
in developing code for CSE research projects no
doubt feel justified in believing that their codes
are of good “quality”, after all they generate valid
scientific results that pass peer review, however
here we would define that as “effective” software

David Worth
Science and Technology Facilities Council, UK

Chris Greenough
Science and Technology Facilities Council, UK

Shawn Chin
Science and Technology Facilities Council, UK

Pragmatic Software Engineering
for Computational Science

ABSTRACT

The purpose of this chapter is to introduce scientific software developers to software engineering tools
and techniques that will save them much blood, sweat, and tears and allow them to demonstrate the
quality of their software. By introducing ideas around the software development life cycle, source code
analysis, documentation, and testing, and touching on best practices, this chapter demonstrates ways in
which scientific software can be improved and future developments made easier. This is not a research
article on current software engineering methods, nor does it attempt to specify best practices. Its aim
is to introduce components that can be built into a tailored process. The chapter draws upon ideas
of best practice current in software engineering, but recommends using these only selectively. This is
done by presenting details of tools that can be used to implement these ideas and a set of case studies
to demonstrate their use.

120

Pragmatic Software Engineering for Computational Science

rather than good “quality”. In this chapter, we
argue that scientific software could benefit from
the pragmatic application of software engineering
tools and techniques in ways that would improve
the lot of both developers and users. That is, in
terms of increasing productivity and making
software not only useful for its dedicated research
purpose in a given project, but also from the point
of view of making it more readily shareable and
re-useable. These features are increasingly impor-
tant in academic CSE where collaborative teams
are becoming more common and repositories of
software such as the one hosted by National Centre
for Atmospheric Science (NCAS) or the CCPForge
facility run by the STFC Computational Science
and Engineering Department are being set up by
funding bodies.

Our judgement of “quality” may seem harsh,
and the authors make it with reluctance, but as
experienced scientific programmers we know
that this admission is the first step in a process of
improvement. There are many reasons why quality
may be low, but the foremost is that codes have
been developed in a piecemeal way over many
years, from what was originally a research code.
There is no suggestion that developers set out to
write bad code or wish to leave it in such a state.

Software quality has many definitions but in
this chapter the term can be taken to mean how
easy the code is to maintain and develop. Exactly
what this means is dependent on those who develop
and use the software and no one set of instructions
can cover all situations. As will be made clear in
this chapter there is no single process derived
from “best practice” that fits scientific software
development.

This assessment of quality bears no essential
relationship to the scientific outputs of the soft-
ware. Users are generally happy with the results
and publish papers in refereed journals, boosting
confidence that the software is adequate. However,
the ability to measure, report and improve software
quality will have an impact on the users’ percep-
tion. Being able to demonstrate, for example,

that source code has been checked in a particular
way, that a certain sort of testing has reached a
quantifiable level, or that the introduction of new
features has not caused any damage, will increase
the users’ confidence even further.

Developers, on the other hand, often believe
that “software engineering”, by adding the burden
of documentation and reporting, will retard the
introduction of new features into a code. This is
why the word pragmatic has been specifically
used in the title of this chapter. Unthinking imple-
mentation of a software engineering methodology
picked at random is not the way to proceed. In
general, good computational scientists research
and evaluate different modelling approaches and
investigate solution algorithms before making
decisions about what will be implemented. On oc-
casions no single idea will do, and then a selection
of ideas will be adapted to suit the situation. The
idea of pragmatic software engineering is simply
the application of these same research skills to the
way in which software is developed.

Adopting software engineering ideas in this
reasoned manner will improve the developer’s
lot by making it clear what a particular piece of
work is to achieve, making source code more
understandable, making it easier to report what
has been done, improving testing during develop-
ment (and as a consequence reducing the bugs in
released code) and creating software that is easier
to maintain and extend. Going further and creating
an agreed process for developing a particular code
will ensure that all developers work along similar
lines, new developers can “do it right” and all de-
velopers work more collaboratively. Overall this
should increase the pace of development, creating
a better world for all (including funding bodies).

In this chapter we present a wide variety of
tools and techniques, along with a range of ap-
proaches to the process of software development.
No single approach or set of tools can be considered
“the best” and applied without thought. They are
offered as an aid to good software development,
making the life of developers easier, and giving

29 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/pragmatic-software-engineering-computational-

science/60358

Related Content

Navigating Through Choppy Waters of PCI DSS Compliance
Amrita Nanda, Priyal Popatand Deepak Vimalkumar (2018). Cyber Security and Threats: Concepts,

Methodologies, Tools, and Applications (pp. 1093-1124).

www.irma-international.org/chapter/navigating-through-choppy-waters-of-pci-dss-compliance/203549

Ensuring the Safety of UAV Flights by Means of Intellectualization of Control Systems
Konstantin Dergachovand Anatolii Kulik (2019). Cases on Modern Computer Systems in Aviation (pp. 287-

310).

www.irma-international.org/chapter/ensuring-the-safety-of-uav-flights-by-means-of-intellectualization-of-control-

systems/222194

An Analysis of the Agile Theory and Methods in the Light of the Principles of the Value Co-

Creation
Bertrand Verlaine (2021). Research Anthology on Recent Trends, Tools, and Implications of Computer

Programming (pp. 631-650).

www.irma-international.org/chapter/an-analysis-of-the-agile-theory-and-methods-in-the-light-of-the-principles-of-the-

value-co-creation/261047

Implementing Eco-Innovation by Utilizing the Internet to Enhance Firm's Marketing Performance:

Study of Green Batik Small and Medium Enterprises in Indonesia
Vincent Didiek Wiet Aryanto, Yohan Wismantoroand Karis Widyatmoko (2020). Disruptive Technology:

Concepts, Methodologies, Tools, and Applications (pp. 1290-1307).

www.irma-international.org/chapter/implementing-eco-innovation-by-utilizing-the-internet-to-enhance-firms-marketing-

performance/231242

Deconstructive Design as an Approach for Opening Trading Zones
Doris Allhutterand Roswitha Hofmann (2012). Computer Engineering: Concepts, Methodologies, Tools and

Applications (pp. 394-411).

www.irma-international.org/chapter/deconstructive-design-approach-opening-trading/62455

http://www.igi-global.com/chapter/pragmatic-software-engineering-computational-science/60358
http://www.igi-global.com/chapter/pragmatic-software-engineering-computational-science/60358
http://www.irma-international.org/chapter/navigating-through-choppy-waters-of-pci-dss-compliance/203549
http://www.irma-international.org/chapter/ensuring-the-safety-of-uav-flights-by-means-of-intellectualization-of-control-systems/222194
http://www.irma-international.org/chapter/ensuring-the-safety-of-uav-flights-by-means-of-intellectualization-of-control-systems/222194
http://www.irma-international.org/chapter/an-analysis-of-the-agile-theory-and-methods-in-the-light-of-the-principles-of-the-value-co-creation/261047
http://www.irma-international.org/chapter/an-analysis-of-the-agile-theory-and-methods-in-the-light-of-the-principles-of-the-value-co-creation/261047
http://www.irma-international.org/chapter/implementing-eco-innovation-by-utilizing-the-internet-to-enhance-firms-marketing-performance/231242
http://www.irma-international.org/chapter/implementing-eco-innovation-by-utilizing-the-internet-to-enhance-firms-marketing-performance/231242
http://www.irma-international.org/chapter/deconstructive-design-approach-opening-trading/62455

