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Chapter V

Statistical Uncorrelation
Analysis

ABSTRACT
This chapter shows a special LDA approach called optimal discrimination vectors
(ODV), which requires that every discrimination vector satisfy the Fisher criterion.
After introduction, we first give some basic definitions. Then, uncorrelated optimal
discrimination vectors (UODV) are proposed. Next, we introduce an improved UODV
approach, and offer some experiments and analysis. Finally, we summarize some useful
conclusions.

INTRODUCTION
ODV is a special LDA approach that requires that every discrimination vector

satisfy the Fisher criterion. Various literature discuss ODV. Foley and Sammon present
a set of optimal discrimination vectors for two-class problems, which requires the
discrimination vectors to satisfy the orthogonality constraint (Foley & Sammon, 1975).
Foley’s approach is called the Foley-Sammon ODV (FSODV). Okada and Tomita propose
an optimal orthonormal system for discrimination analysis (Okada & Tomita, 1985).
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Duchene et al. propose orthogonal discrimination analysis in a transformed space
(Duchene & Leclercq, 1988). Liu, Cheng and Yang propose more comprehensive solu-
tions for the ODV set (Liu, Cheng, & Yang, 1993).

While all of the above ODV approaches employ the orthogonality constraint, Jin,
Yang, Hu, Tang and Lou recently proposed an UODV (Jin, Yang, Hu, & Lou, 1993)
approach and a related theorem (Jin, Yang, Tang, & Hu, 2001). UODV uses the constraint
of statistical uncorrelation. The experimental results show that UODV produces better
outcomes than FSODV on the same hand-written data, where the only difference lies in
their respective constraints. On the other hand, Yang, Yang, and Zhang (2002) prove that
the uncorrelation constraint is theoretically superior to the orthogonality constraint.
However, some disadvantages still exist in Jin’s approach. First, in order to guarantee

that  S
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 is nonsingular, it uses the between-class correlation matrix, 
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production matrix of the KL transform, where m
i
 is the average value of the ith class

samples. It is not a TPCA method that uses S
t
 as the production matrix. Therefore, it

cannot reflect the total scatter of the whole sample set. Second, its theorem is merely
suitable for a specific situation, where the non-zero discrimination values of the Fisher
criterion are unequal mutually, implying that it cannot be applicable to other situations.

BASIC DEFINITION
Suppose that  X is an N-dimensional sample set, and w

1
, w

2
, . . . w

c
  are C  known

pattern classes of  X. Let m
i
 and  P

i
(i = 1, 2, . . . , C) be the mean vector and a priori probability

of class w
i
. Let  m be the mean vector of  X. The between-class scatter matrix,  S

b
, the within-

class scatter matrix,  S
w
 and the total scatter matrix,  S

t
, are defined as Equations 3.43, 3.37

and 3.41.
The Fisher criterion is expressed by the maximum value of the following function

as Equation 3.31. And here, we change the symbol w to ϕ  to explain the following problems
simply.

The first step is to perform TPCA; that is, to take  S
t
 as the production matrix of the

K-L transform. Suppose that the rank of  S
t
 is r

t
. We get r

t
 eigenvectors corresponding

to the non-zero eigenvalues of  S
t 
, which form the transform matrix  W

TPCA
. Thus, any N-

dimensional sample from  X can be transformed into an  r
t
 -dimensional vector. The reason

we choose TPCA transform is TPCA has a favorable property; namely, the statistical
uncorrelation. Suppose that there are two different discrimination vectors ϕ
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) The statistical uncorrelation in Jin, Yang, Hu and Lou (2001) is defined as:
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].  According to the definition of  W

TPCA 
, it is obvious that:
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Obviously, TPCA can satisfy the statistical uncorrelation.
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