Computer Mediated Interorganizational Knowledge Sharing: Insights from a Virtual Team Innovating Using a Collaborative Tool

Ronald Rice
Rutgers University, USA

Ann Majchrazak, Nelson King and Sulin Ba
University of Southern California, USA

Arvind Malhotra
University of North Carolina at Chapel Hill, USA

How does a team use a computer-mediated technology to share and reuse knowledge when the team is inter-organizational and virtual, when the team must compete for the attention of team members with collocated teams, and when the task is the creation of a completely new innovation? From a review of the literature on knowledge sharing and reuse using collaborative tools, three propositions are generated about the likely behavior of the team in using the collaborative tool and reusing the knowledge put in the knowledge repository. A multi-method longitudinal research study of this design team was conducted over its ten-month design effort. Both qualitative and quantitative data were obtained. Results indicated that the propositions from the literature were insufficient to explain the behavior of the team. We found that ambiguity of the task does not determine use of a collaborative tool; that tool use does not increase with experience; and that knowledge that is perceived as transient (whether it really is transient or not) is unlikely to be referenced properly for later search and retrieval. Implications for practice and theory are discussed.
completely new innovation?

This is an important set of interrelated questions because of the increasing use of virtual interorganizational collaboration and the development and diffusion of collaborative technologies (CT) to facilitate the collaboration process (Allen and Jarman 1999; Coleman 1997; Haywood, 1998; Lipnack and Stamps, 1997). Dow, Ford, Chrysler and British Petroleum are well-known examples of companies diffusing CTs to facilitate their work (Ferranti 1997; Hamblen 1998). A Gartner Group (1997) study went as far as to say: “Real-time collaboration use will change from virtually nothing to ubiquity by 1999” (p.26).

The use of CTs is fundamental to making virtual teams work. A CT, also referred to as a virtual workplace, should be able to record, at a minimum, the process of the group, an agenda, libraries of solutions and practices, different forms of interaction, meta-information (such as date, sequence, author of contributions), and provide shared information storage, access and retrieval (Ellis et al., 1991; Field, 1996; Ishii et al., 1994; Kling, 1991; Nunamaker et al., 1993, 1995; Romano et al., 1998; Thornton and Lockard, 1994).

Critical, then, for knowledge-sharing and reuse with CTs is that the CT includes not just a mechanism for exchanging information (such as e-mail), but a mechanism for creating a knowledge repository and a mechanism for accessing the knowledge repository. In this chapter, we report results from a 10-month field study of an interorganizational virtual engineering design team and describe how a CT is used with respect to knowledge-sharing. The two questions we address are: (1) When do members of a virtual, distributed, interorganizational team designing an innovative new product use a CT to collaborate? (2) When and how do team members reuse the knowledge once it is shared in the knowledge repository of the CT?

LITERATURE REVIEW AND RESEARCH PROPOSITIONS

The criticality of CTs to collaborative work has been well-recognized in the literature (see Eveland and Bikson, 1989; Galegher and Kraut, 1990; Hiltz and Turoff, 1993; Johansen, 1988, 1992; Olson and Atkins, 1990; Rice and Shook, 1990; Romano et al., 1998; Schrage, 1990). Among the many factors affecting the use of CTs suggested by these studies, two are of primary concern to us in this study: 1) experience with the CT and 2) task being accomplished using the CT.

Experience with a CT is a critical factor because, typically, teams use face-to-face media to share crucial knowledge on the extant norms, habits, and political relationships, in addition to content (Ehrlich, 1987; Kraut et al., 1998; Markus, 1992; Perin, 1991; Rice and Gattiker, 1999; Saunders and Jones, 1990). Over time, however, teams have been observed to gradually adjust to conveying richer information through the collaborative tool (Hiltz and Turoff, 1981; Orlikowski et al., 1995; Walther, 1992).

In addition to experience, studies have also found that not all tasks that a team might undertake to accomplish its objective are best suited for use with CTs. Several theories provide foundations for this perspective: “information richness” theory, “social presence” theory (Daft and Lengel, 1986; Rice, 1984, 1987; Short et al., 1976), and the task
Related Content

Empirical Investigation of Organisational Learning Ability as a Performance Driver in Construction
www.irma-international.org/chapter/empirical-investigation-organisational-learning-ability/25008/

A Hybrid Approach Using Maximum Entropy and Bayesian Learning for Detecting Delinquency in Financial Industry
Dharminder Kumar and Suman Arora (2016). International Journal of Knowledge-Based Organizations (pp. 60-73).
www.irma-international.org/article/a-hybrid-approach-using-maximum-entropy-and-bayesian-learning-for-detecting-delinquency-in-financial-industry/143221/

E-Commerce as Knowledge Management: Managing Consumer Knowledge
www.irma-international.org/chapter/commerce-knowledge-management/25297/

The View of Systems Thinking of Dr. James Courtney, Jr.
www.irma-international.org/article/view-systems-thinking-james-courtney/2547/
Modeling the Metrics of Individual, Organizational and Technological Knowledge Sharing Barriers: An Analytical Network Process Approach
B. P. Sharma and M. D. Singh (2014). International Journal of Knowledge Management (pp. 43-57).
www.irma-international.org/article/modeling-the-metrics-of-individual-organizational-and-technological-knowledge-sharing-barriers/112065/