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INTRODUCTION

With the rapid progress in the development of 
experimental techniques, more and more high-
throughput datasets measuring temporal behavior 
of hundreds of or even thousands of proteins or 
genes are offering rich opportunities for research-

ers. In order to exploit the full potential of these 
approaches, we have to be able to convert the 
resulting data into the most appropriate framework 
to account for the functioning of the underlying 
biological system. Over the past two decades, 
a variety of attempts have been carried out in 
this field and reverse engineering approaches to 
uncover network structures in genes, proteins, 
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ABSTRACT

As one of the most successful approaches to uncover complex network structures from experimental 
data, Granger causality has been widely applied to various reverse engineering problems. This chap-
ter first reviews some current developments of Granger causality and then presents the graphical user 
interface (GUI) to facilitate the application. To make Granger causality more computationally feasible 
and satisfy biophysical constraints for dealing with increasingly large dynamical datasets, two attempts 
are introduced including the combination of Granger causality and Basis Pursuit when faced with non-
uniformly sampled data and the unification of Granger causality and the Dynamic Causal Model as a 
novel Unified Causal Model (UCM) to bring in the notion of stimuli and modifying coupling. Several 
examples, both from toy models and real experimental data, are included to demonstrate the efficacy 
and power of the Granger causality approach.
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neurons and brain areas are still one of the hottest 
topics in computational systems biology.

Causality analysis based upon experimental 
data has become one of the most powerful and 
valuable tools in discovering connections between 
different elements in complex biological systems 
(Cantone et al., 2009; Camacho & Collins, 2009). 
Comparing approaches including information 
theory, control theory or Bayesian statistics, here 
we focus on another successful approach: Granger 
causality, which is based upon simple ideas and 
has a concise theory but is even more powerful to 
capture the nature and dynamics of a biological 
system. As an example, in one recent comment on 
a paper in Cell, we have demonstrated that Granger 
causality outperforms all the other approaches the 
authors had employed to build causal networks 
(Zou et al., 2009).

The basic idea of Granger causality can be 
traced back to Wiener (Wiener, 1956) who put 
forward the notion that if the prediction of one 
process can be improved by incorporating the 
past information of the second process, then the 
second process causes the first one. Later, Granger 
followed this point and formalized it in the con-
text of linear regression models (Granger, 1969). 
Geweke’s decomposition of a vector autoregres-
sive process endowed Granger causality with a 
spectral representation (Geweke, 1982, 1984) and 
made the interpretation more informative in that 
interactions in different frequency bands could 
be clearly figured out instead of only in a single 
number. Recently, a series of papers based upon its 
original formalism have been published to make 
Granger causality suitable to address biological 
and computational issues in different situations. 
These useful extensions include partial Granger 
causality (Guo et al., 2008) which is able to elimi-
nate the influences of exogenous inputs and latent 
variables; complex Granger causality (Ladroue 
et al., 2009) which can uncover the interactions 
among groups of time-series and harmonic Grang-

er causality (Wu et al. 2008) which introduces a 
model with an oscillating external input and puts 
special emphasis on environmental effects. These 
methods can be combined to identify interactions 
in the time and frequency domains in local and 
global networks. Furthermore, detailed and in-
tensive comparisons between Granger causality 
and Bayesian networks have also been carried 
out (Zou & Feng, 2009). In this chapter, we first 
apply well established Granger causal analysis 
approaches to microarray data from Arabidopsis 
thaliana (Arabidopsis) to recover a well-known 
gene circuit. Our graphical user interface (GUI) is 
also presented to facilitate the application. These 
will show the power of Granger causality and its 
convenient implementation.

In spite of all the successful extensions and 
applications of Granger causality mentioned 
above, some limitations still exist which restrict its 
application on a broader basis. The first issue we 
encounter, whatever the approach is to be applied 
to a set of data, is preprocessing. Preprocessing 
should not be ignored and can sometimes play a 
critical role in determining final conclusions. A 
brute-force application of Granger causality could 
simply result in false or erroneous conclusions. 
Two general approaches of preprocessing in deal-
ing with temporal data are down-sampling and 
up-sampling, after filtering out noise or extreme 
points. We have found that both techniques are 
useful and are commonly implemented before do-
ing further analysis. The choice of down-sampling 
or up-sampling depends on the nature of data. In 
neurophysiology, the original data are usually 
sampled at a very high frequency, for example, 
2 kHz. Even if we fit the data with an autoregres-
sive model with an order of 20, the model only 
covers a time window of 10 milliseconds, a very 
short duration. As a result, information in the low 
frequency band could be lost and the features of 
slow oscillations such as theta rhythms (4-8 Hz) 
are difficult to be captured. On the other hand, 
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