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Object-Oriented databases are becoming increasingly
popular in business.  Issues such as query optimization,
analysis and design techniques, and concurrency control have
been addressed as they pertain to the relational model but
have not been addressed as they apply to the object-oriented
model.  This paper includes the framework development and
description of a concurrency control mechanism named O2C2

which is specifically designed for an object-oriented data-
base.  O2C2 is a lock–based concurrency control mechanism
that forms the basis of this research.

A description of database concurrency control and
object-oriented database precepts are presented to provide a
basis for a comprehensive framework for concurrency control
in object-oriented databases.  The theory is developed along
four specified dimensions which are the hierarchical level
dimension, the data type dimension, the composite or complex
objects dimension and transaction type dimension.  Addition-
ally, a comprehensive list of rules is given that are crucial to
an object-oriented database concurrency control mechanism.
The rules are given to provide a basis not only for the O2C2

mechanism, but for any object-oriented database concurrency
control mechanism.  The O2C2 mechanism is then presented
after which a discussion ensues about the possible transaction
types in order to demonstrate the robustness of the mecha-
nism.

Concurrency control (CC) is defined by Bernstein et al.
(1987) as follows: “concurrency control is the activity of

coordinating the actions of processes that operate in parallel,
access shared data, and therefore potentially interfere with
each other.”  In other words, CC mechanisms interleave the
operations of competing processes in such a way that consis-
tency is maintained.  It is also one of a few critical components
of a database management system.  A few basic approaches to
concurrency control have been proposed and developed in the
database area.  Based on these approaches, several hundred of
algorithms have been created (Barghouti & Kaiser, 1991;
Bernstein, et al., 1987).   However, very few of these address
object–oriented databases.

The concurrency control mechanism O2C2, described
in this research contributes in two important ways.  First, the
concurrency control mechanism O2C2 is presented along with
how it relates to the developed framework.  O2C2 is lock–
based and two–phased but is more complex than standard
algorithms in order to deal with the complexities of object–
oriented databases.  Second, it adds to the body of theory that
explains the objectives, problems, and tradeoffs in the area of
concurrency control for object–oriented databases by compar-
ing it to the mechanisms in ORION and O2.

The advantages of O2C2 include a higher degree of
concurrency than current implementations.  It is superior to
other approaches because more transactions are allowed to
process at the same time due to fewer conflicting lock types
and a finer granularity of lock types.  In a majority of circum-
stances, the higher degree of concurrency yielded by O2C2

results in higher throughput which translates into better per-
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formance.
Concurrency control is critical because it is the deciding

factor of database performance.  In Franaszek, et al. (1992)  it
is shown that hardware advances have led to several fold
improvements in performance and that if the trend continues,
CC algorithms will have to be much more efficient just to keep
pace with hardware.  Indeed, data contention is increasingly
the single most critical factor of database performance.

Concurrency control in an object–oriented database is
necessarily more complex than it is in other types of databases
due to several reasons such as inheritance, the fact that updates
to certain parts of the database are not independent from
updates to other parts, and the nature of what constitutes an
object.

High performance CC mechanisms that produce correct
schedules are crucial to the success of any database (Bernstein,
et al., 1987).  Indeed, any database model will exist only in
theory until issues such as concurrency control are examined.
The object–oriented database field is emerging as a critical
area in database research but work in concurrency control has
so far been limited to versioning (Cattell, 1994) and some
simple hierarchical locking matrices.  A comprehensive
theory does not yet exist explaining the objectives, problems,
and tradeoffs that must be examined in the area of concurrency
control for object–oriented databases.

The paper proceeds with section 2 providing an intro-
duction to concurrency control and object–oriented databases.
Section 3 describes the disadvantages and problems of current
approaches to object–oriented database concurrency control.
Section 4 provides a framework for object–oriented database
concurrency control while section 5 includes a description of
O2C2 detailing the types of locks and when they are used.
Section 6 is a summary of the performance analysis described
in other research and section 7 concludes with a discussion of
the implications of this future research.

Concurrency Control and Object-OrientedConcurrency Control and Object-OrientedConcurrency Control and Object-OrientedConcurrency Control and Object-OrientedConcurrency Control and Object-Oriented
DatabasesDatabasesDatabasesDatabasesDatabases

Concurrency Control MechanismsConcurrency Control MechanismsConcurrency Control MechanismsConcurrency Control MechanismsConcurrency Control Mechanisms

Along with coordinating transaction processing in a
manner that maintains consistency, it is implicit in
concurrency control studies that performance is the other
critical factor.  That is, all other things equal, mechanisms that
support higher levels of performance for a given task are more
desirable than mechanisms that support lower levels of perfor-
mance.  In reality, each of the hundreds of CC algorithms
provide tradeoffs depending on the characteristics of the
application (Bernstein, et al., 1987; Gray & Reuter, 1993;
Papadimitriou, 1979).  For the purposes of this paper then,
concurrency control will be defined as follows:

A concurrency control mechanism allows multiple users

to access and update the database so that overall correctness
is maintained and performance is optimized.   This means that
each transaction is executed as though it were processed in
isolation (in order to maintain consistency), yet, throughput is
maximized.

In the database area, the three standard CC implementa-
tions are two–phase locking, timestamping, and optimistic
protocols (Bernstein, et al., 1987; Eswaran, et al., 1976; Gray,
et al., 1976;Kung & Robinson, 1981).   The three CC ap-
proaches are briefly reviewed in the following paragraphs.
Locking however, was chosen in this research study for two
reasons.  First, it is the approach most often used for database
implementations because it is well understood and can be used
for general transactions (Bernstein, et al., 1987; Eswaran, et
al., 1976; Gray, et al., 1976).  Second, locking schemes are
described for a few current object–oriented database imple-
mentations including ORION and O2.  These lock–based
schemes provide the basis of comparison in a performance
study.

Locks are commonly used in order to create a schedule
that results in a consistent database.   Consistency is deter-
mined by comparing the schedules a CC mechanism produces
with serial schedules: that is, schedules that only allow one
transaction at a time to execute.  Serializability is the standard
of consistency by which all CC mechanisms are compared.
Some basic rules for two–phased locking include  (Eswaran,
et al., 1976):

1. Whenever a transaction reads or writes a data item, it must
hold some kind of lock on that item.

2. At some point before the transaction finishes and becomes
inactive, all locks must be released.

3. For any transaction, all lock requests must precede all
unlock requests.  This means an unlock request is never
followed by lock request.  If this happens, the transaction
must be forced to abort.  This is the heart of two–phased
locking.

4. A transaction cannot write into the database until after the
commit point is reached.  This is done to avoid rollbacks
(also known as the cascading effect).

These are just the basic rules of two–phased locking.
The two–phased protocol is so named because two phases are
observed.  First, the growing phase accumulates lock requests;
second, the shrinking phase unlocks items after processing.
Finally, after the transaction reaches the commit point, it is
physically written into the database.

The timestamping technique was originally designed for
distributed database systems, but many centralized CC
mechanisms also utilize some version of timestamps
(Bernstein, et al., 1987).  The basic rule of timestamp ordering
is that older transactions are processed before younger ones.  If
a younger transaction has already processed a given item and
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CLASS HIERARCHY EXAMPLECLASS HIERARCHY EXAMPLECLASS HIERARCHY EXAMPLECLASS HIERARCHY EXAMPLECLASS HIERARCHY EXAMPLE

A = AttributeA = AttributeA = AttributeA = AttributeA = Attribute
I = InstanceI = InstanceI = InstanceI = InstanceI = Instance
M = MethodM = MethodM = MethodM = MethodM = Method
No. = Class Number (Italicized means Attribute Class)No. = Class Number (Italicized means Attribute Class)No. = Class Number (Italicized means Attribute Class)No. = Class Number (Italicized means Attribute Class)No. = Class Number (Italicized means Attribute Class)

1 Computer
A1A1A1A1A1 – Manufacturer
A2A2A2A2A2 – Secondary Storage
A3A3A3A3A3 – Price
A4A4A4A4A4 – Performance
A5A5A5A5A5 – Name
A6A6A6A6A6 – No. Processors
I1I1I1I1I1 – Cray Supercomputer K
I2I2I2I2I2 – XYZ Corp. Dedicated Database Computer
I3I3I3I3I3 – ABC Corp. Front–End Server
M1M1M1M1M1 – Add an instance of this class
M2M2M2M2M2 – Delete  instance from the database
M3M3M3M3M3 – Modify an instance of this class

M4M4M4M4M4 – Modify Attribute A1 of this class
.....
.....
MMMMMnnnnn     – Modify Attribute Ai of this class
 Computer_Manufacturer

A1A1A1A1A1 – Name
A2A2A2A2A2 – Address
A3A3A3A3A3 – Phone Number
I1I1I1I1I1 – IBM
I2I2I2I2I2 – Digital
I3I3I3I3I3 – Apple

Computer_Secondary Storage
A1A1A1A1A1 – Type
A2A2A2A2A2 – Capacity
A3A3A3A3A3 – Price
I1I1I1I1I1 – Fujitsu Model 1020
I2I2I2I2I2 – Seagate 20205
I3I3I3I3I3 – Maxtor Model ABC

Computer_Performance
A1A1A1A1A1 – Secondary Storage Access
         Speed
A2A2A2A2A2 – Primary Storage Access Speed
A3A3A3A3A3 – Processor Speed
I1I1I1I1I1 – COMPAQ Model A
I2I2I2I2I2 – Apple Laptop V
I3I3I3I3I3 – Digital Mainframe

1.1   Mini & Mainframe Computers
A1A1A1A1A1 – Available Peripherals
A2A2A2A2A2 – Terminal type
A3A3A3A3A3 – Cabinet Type (Big / Huge)
A4A4A4A4A4 – Data Communication Facility
A5A5A5A5A5 – I/O Types Supported
A6A6A6A6A6 – Operating System
I1I1I1I1I1 – IBM System 3095

I2I2I2I2I2 – UNISYS System 1001
I3I3I3I3I3 – HP 3001

1.2  Desktop Computers
A1A1A1A1A1 – Pointing Device Type
A2A2A2A2A2 – Monitor Type
A3A3A3A3A3 – Case Type (Desktop / Tower)
A4A4A4A4A4 – Processor Type
A5A5A5A5A5 – Color or Monochrome monitor
I1I1I1I1I1 – Commodore Model 1
I2I2I2I2I2 – Acari Model 2
I3I3I3I3I3 – Amigo Model 3

1.2.1 UNIX Workstations
A1A1A1A1A1 –UNIX Version
A2A2A2A2A2 –Bundled Software
A3A3A3A3A3 –Network Card
I1I1I1I1I1 – VAX Workstation  I
I2I2I2I2I2 –HP Apollo I
I3I3I3I3I3 –SUN SPARC I

1.2.2  Apple Standard
A1A1A1A1A1 –Bundled Software
A2A2A2A2A2 –Hardware Containment
A3A3A3A3A3 –Network Card
A4A4A4A4A4 –Compatible Cards
A5A5A5A5A5 –Operating System
I1I1I1I1I1 – Apple Workstation 1
I2I2I2I2I2 – Apple Educational
I3I3I3I3I3 – Apple Laptop 1

1.2.3  IBM Standard
A1A1A1A1A1 –Graphics Card Type
A2A2A2A2A2 –Video Bus (Local or Standard)
A3A3A3A3A3 –Architecture Type (ISA or EISA)
A4A4A4A4A4 –Hard Disk Controller Type
A5A5A5A5A5 –Power Supply Size
A6A6A6A6A6 –Network Card
A7A7A7A7A7 –Performance (MHZ)
A8 A8 A8 A8 A8 Operating System
I1I1I1I1I1 – COMPAQ Model A
I2I2I2I2I2 – Northgate Model Q
I3I3I3I3I3 –Gateway 2000 Model Z
1.2.3.1     Laptops

A1A1A1A1A1 –ScreenSize
A2A2A2A2A2 –Power Saving Options
A3A3A3A3A3 –Keyboard Size
A4A4A4A4A4 –Weight
I1I1I1I1I1 – ZEOS Model 1
I2I2I2I2I2 – Toshiba Model 4
I3I3I3I3I3 – NEC Model 8
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updated the database, then the older conflicting transaction is
aborted and restarted with a more recent or larger timestamp.

The philosophy behind the optimistic techniques for CC
is that in certain systems, conflicting transactions are rare.  In
systems where conflicts between transactions are rare, locking
approaches impose unnecessary overhead and thus restrict the
concurrency degree.  Throughout their paper, Kung and
Robinson  (1981)  take the optimistic view whenever decisions
regarding conflicts must be made but they always allow for the
rare case of conflicts.  They allow all transactions to proceed
and then perform avalidation phase immediately prior to the
write or commit phase.  Kung and Robinson describe optimis-
tic techniques in phases and are known as the read phase, the
validation phase, and the write phase.

Object–Oriented DatabaseObject–Oriented DatabaseObject–Oriented DatabaseObject–Oriented DatabaseObject–Oriented Database
Management SystemsManagement SystemsManagement SystemsManagement SystemsManagement Systems

Object–oriented databases have not only provided a
fertile area of research for academics, they are also starting to
fill a void in fields where conventional database technology is
deficient.  Some deficiencies of conventional databases in-
clude an inability to manage complex types of data and more
realistically model real world data.  Areas such as CAD and
software engineering are benefitting from the object–oriented
database model because it is able to efficiently manage more
complex data(Cart & Ferrie, 1992; Cattell, 1994; Garza &
Kim, 1988).

Unlike the relational database model, however, there is
neither an underlying elegant mathematical model, nor is there
a well established, accepted set of concepts.  There also seems
to be a marketing twist to both research and practice in that
many papers and products are incorrectly labeled “object–
oriented.”  Because it is such a promising field, many systems
and research projects are touted as “object–oriented”; unfor-
tunately, many fall short of expectations.  Additionally, it is
interesting to note that many of the concepts of the object–
oriented database management system field seem correlated
to concepts native to semantic modeling (Hammer & McLeod,
1981; Smith & Smith, 1977).

Kim (Garza & Kim, 1988; Kim, 1990)has stated many
basic, important concepts concerning object–oriented data-
bases as a result of the development he led during the creation
of the ORION system.  It was one of the first commercial
object–oriented databases and is considered quite advanced.
It is noted, though, that like the relational database area, very
few object–oriented database implementations conform to all
of the basic theory.  For example, most object–oriented data-
bases do not support true multiple inheritance even though the
object–oriented database model includes it.

Figure 1 is an example that demonstrates some of the
basic concepts in object–oriented databases.

Objects are simply any real–world entities that a user

finds valuable to identify.  Objects are related to the instance
concept in semantic data modeling.  An instance object be-
longs to one class and is an instance of the class in which it
belongs.  An object can be a member of only a single class.  It
is possible, however that a class could inherit its attributes and
methods from more than one super class.  Though multiple
inheritance introduces complexity, there are many situations
where it would facilitate representation of a given state as well
as reduce the amount of development time.

In Figure 1, an example of a class hierarchy is provided.
An example of an instance object in this Figure would be a
Northgate Model Q personal computer.  That object would be
an instance of the IBM standard class and would inherit
attributes from the desktop computer class and the computer
class.

In an object–oriented database management system
(OODBMS), each object is assigned a unique ID number.  The
ID number is theoretically never assigned to another object
even if the original object is deleted from the system(Garza &
Kim, 1988; Kim, 1990).  An instance object consists of values
for the attributes of the object.  An object that represents the
Model Q computer as an instance would have values for the
attributes called {Manufacturer}, {Performance}, {Second-
ary Storage},{Price retail}, {Name}, {No. Processors}, and
all attributes that are included in the desktop computer class.
In general, an object can be an instance, a class definition, or
a method and it is generally advisable to specify the object type
for clarification.

The class concept is another important idea that has its
roots in semantic modeling (Hammer & McLeod, 1981; Smith
& Smith, 1977).  A class collects a group of logically similar
objects with a defined set of attributes and all objects that are
an instance of the class, have the defined structure.  In Figure
1, a class at a high level is computer which has six attributes.
The two subclasses of computer are desktop computers and
mini & mainframe computers.   Each class and its subclasses
are individually a class.  A rigid methodology does not exist for
determining what classes should be modeled in a given situa-
tion.  Though some heuristics exist, modeling is usually done
by a designer with experience who has the foresight to plan an
acceptable system.

Inheritance corresponds to the semantic modeling con-
cepts of generalization and specialization (Smith & Smith,
1977).  A subclass is a specialized case of the its superclass.
We might observe in Figure 1 that the subclass Desktop
computer is a specialization of the more general class com-
puter.  A subclass inherits themethods and attributes of all of
its superclasses.  This can potentially be a substantial time
savings in software engineering as only the attributes and
methods specific to a new subclass need be defined.

Not only are attributes predefined in a class, but so are
the operations that are commonly referred to as methods,
which give rise to the notion of encapsulation.  Encapsulation
is a desired attribute that occurs when the methods and the
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structure of the object are “enveloped.”  That is, they are
logically “surrounded.”   Encapsulation properly constructed
means that objects encapsulate both the methods and structure
and there is no means that either can be accessed except
through the predefined methods.

A method is often defined such that it can be inherited by
as many subclasses as possible; thus reducing the software
development time.  It is generally held that as many subclasses
as possible should be able to inherit methods in order to reduce
the software engineering effort as fewer methods will have to
be constructed and tested.

Different methods can be invoked at many different
locations even within the same subclass as long they do not
conflict.  An important issue for concurrency control is that if
the definition of a method is being modified, no copy of it can
be operating anywhere in the hierarchy.  Therefore, an opera-
tion that updated a method would not be compatible with an
operation that used that method to update an instance.

An example from Figure 1 is when a method is needed
to modify an instance from the subclass Apple StandardApple StandardApple StandardApple StandardApple Standard.  The
attribute Bundled Software needs to be modified but the
method that was created to modify Bundled Software is being
updated.  Modification of Bundled Software will have to wait
until the method change is completed.

Table 1 contains a summary of the most crucial object–
oriented database concepts.

Shortcomings of Current Concurrency ControlShortcomings of Current Concurrency ControlShortcomings of Current Concurrency ControlShortcomings of Current Concurrency ControlShortcomings of Current Concurrency Control
Mechanisms for Object-Oriented DatabasesMechanisms for Object-Oriented DatabasesMechanisms for Object-Oriented DatabasesMechanisms for Object-Oriented DatabasesMechanisms for Object-Oriented Databases

In this section, a brief summary of the shortcomings of
the O2  and the ORION CC mechanisms are presented in order
to demonstrate the need for improved CC mechanisms.

Concurrency control in the O2 database system can be
classified as a lock–based mechanism adapted to the object–
oriented model.  There are a number of similarities between
the CC mechanisms of the O2 and ORION database systems

(Cart & Ferrie, 1992; Cattell, 1994).  Not only do both systems
use lock–based mechanisms, they both use implicit locking as
a part of the object–oriented hierarchy in order to minimize the
number of explicit locks that must be set (Gray & Reuter,
1993).

Both the O2 and ORION CC mechanisms have limita-
tions that can be improved upon.  First, both have several
different lock types including class definition reads and writes
as well as instance read and writes.  However, too many
combinations in their respective compatibility tables evaluate
to a nonononono, or not compatible.  By defining different lock types that
are more specific along with additional lock types, more yesyesyesyesyes
combinations are possible and a higher degree of concurrency
is possible.

Second, both mechanisms do not distinguish class defi-
nitions from instances or method definitions.  By treating
different object types separately, the concurrency degree can
be increased.  Also, understanding the different operations that
can occur with a different object type will enhance the
concurrency degree.

Another approach to CC in implemented object–ori-
ented databases is versioning (Cattell, 1994; Kim, 1990).
Versioning allows many different versions of an object to be
created and to exist without enforcing consistency require-
ments at creation time.  Reconciling the value of an object to
be consistent with public database must be done before it can
be made public.  Versioning is appropriate long–lived transac-
tions but is not well–suited for standard, short–lived database
transactions due to the amount of time the reconciling process
takes.

To summarize, the current approaches to object–ori-
ented database CC include a direct implementation of two–
phase locking, versioning, and adaptations of lock–based
algorithms that do not differentiate between object types.
Versioning is acceptable for CC but is only used in specialized
applications.  A direct implementation of two–phase locking
results in poor performance as object types are not treated

TermTermTermTermTerm DescriptionDescriptionDescriptionDescriptionDescription

Objects Any real world entity which is associated with a system–wide unique identifier (Cattell, 1994; Kim, 1990).
Class All objects which share the same set of attributes and methods may be grouped into a class.  An object belongs to

only one class as an instance of that class (Kim, 1990).
Attribute An object has one or more attributes. The value of an attribute of an object is also an object (Cattell, 1994; Kim, 1990).
Methods An object has one or more methods which operate on the values of the attributes  (Cattell, 1994; Kim, 1990).
Persistence Data remains after an application program or a user session is executed  (Cattell, 1994).
Inheritance Corresponds to the semantic modeling notion of generalization and specialization.  Methods and class definitions

can be inherited (Kim, 1990).
Encapsulation Provides data independence through the implementation of methods, allowing the private portion of an object to be

altered without affecting transactions that use the object type  (Cattell, 1994).

 Table 1: Object–Oriented Database SummaryTable 1: Object–Oriented Database SummaryTable 1: Object–Oriented Database SummaryTable 1: Object–Oriented Database SummaryTable 1: Object–Oriented Database Summary
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differently.  By developing a framework for object–oriented
database CC, we highlight the areas to be addressed for an
effective CC mechanism.

Framework for Object-Oriented DatabaseFramework for Object-Oriented DatabaseFramework for Object-Oriented DatabaseFramework for Object-Oriented DatabaseFramework for Object-Oriented Database
Concurrency ControlConcurrency ControlConcurrency ControlConcurrency ControlConcurrency Control

In this section, a framework of object–oriented database
concurrency control is developed which includes the neces-
sary rules and dimensions that must be examined.  As illus-
trated in Figure 1, ComputerComputerComputerComputerComputer is the highest level class and is
referenced as class 1.  It has six attributes and three of the
attributes are attribute classes themselves; namely, Manufac-Manufac-Manufac-Manufac-Manufac-
turerturerturerturerturer, Secondary StorageSecondary StorageSecondary StorageSecondary StorageSecondary Storage, and PerformancePerformancePerformancePerformancePerformance.  The other
three attributes are considered simple attributes.  The attribute
classes are numbered 1.0.1, 1.0.2, and 1.0.3 to denote that they
are attributes of class 1 and not subclasses.  The heavy line is
also used to signify the attribute class distinction.

In the narrative (outline form) that follows Figure 1,
instances are listed for many classes.  Though not explicitly
stated, these instances would have a value for each attribute
listed in the class.  Thus, the Cray Supercomputer K instance
would have data for each of the six attributes listed.

Two subclasses are defined for the class ComputerComputerComputerComputerComputer;
Mini & Mainframe ComputersMini & Mainframe ComputersMini & Mainframe ComputersMini & Mainframe ComputersMini & Mainframe Computers and Desktop ComputersDesktop ComputersDesktop ComputersDesktop ComputersDesktop Computers.
They are numbered 1.1 and 1.2 respectively to designate that
they are subclasses of class 1.  Each of the subclasses has its
own specific attributes but each subclass also inherits the
attributes of the parent ComputerComputerComputerComputerComputer.  Thus, every instance of
Desktop ComputersDesktop ComputersDesktop ComputersDesktop ComputersDesktop Computers would have 11 attributes that would
possibly need to be completed; 5 of the attributes defined in its
own class definition and 6 defined in the superclass, Com-Com-Com-Com-Com-
puterputerputerputerputer.

Methods are similar to attributes in that each subclass
has its own specific method defined specifically to operate on
the attributes or instances within that subclass.  Methods, like
attributes can also be inherited.  If an instance is being created
at the Desktop ComputersDesktop ComputersDesktop ComputersDesktop ComputersDesktop Computers class, the attributes of the parent
ComputerComputerComputerComputerComputer (e.g. Manufacturer) will be inherited.  The method
for updating the attribute will have to be inherited along with
the attribute.   Thus, the new instance of Desktop ComputersDesktop ComputersDesktop ComputersDesktop ComputersDesktop Computers
could be operated upon by possibly 11 methods; 5 of the
methods defined in its own class definition and 6 defined in the
ComputerComputerComputerComputerComputer class.

Following this same logic then dictates that an instance
of the class LaptopsLaptopsLaptopsLaptopsLaptops might have 23 attributes to complete
which could potentially be operated on by 23 methods.  Two
items must be noted here though.  First, some attributes in a
general class might not apply to a subclass so the ability to not
inherit attributes is often provided.  For example, in many
Laptop computersLaptop computersLaptop computersLaptop computersLaptop computers the ability to install a network card is not
possible.  For a given system then, programmers have the
ability to disable the inheritance of the network card attribute

in the laptop class.
The second important item is that it is possible to

redefine a given attribute in a subclass from a superclass.  This
is accomplished by assignment of the same name to the
attribute in the subclass as the attribute in the superclass.  This
is necessary because a superclass attribute might not quite
capture the correct meaning for instances in a subclass.  An
example occurs in the IBM StandardIBM StandardIBM StandardIBM StandardIBM Standard class with the attribute
{Performance}.  An instance in the IBM StandardIBM StandardIBM StandardIBM StandardIBM Standard class does
not inherit the {Performance} attribute from the class Com-Com-Com-Com-Com-
puterputerputerputerputer but uses its own attribute.  This is true because the
computer reseller in this example wants to measure perfor-
mance for IBM Standard personal computers by clock speed.
Additionally, the LaptopsLaptopsLaptopsLaptopsLaptops class inherits the attribute {Perfor-
mance} from the closest superclass (IBM StandardIBM StandardIBM StandardIBM StandardIBM Standard) in a
conflict situation.

Dimensions Needed for Object–Oriented ConcurrencyDimensions Needed for Object–Oriented ConcurrencyDimensions Needed for Object–Oriented ConcurrencyDimensions Needed for Object–Oriented ConcurrencyDimensions Needed for Object–Oriented Concurrency
ControlControlControlControlControl

A CC mechanism in an object–oriented database system
must address issues along four dimensions.  They are as
follows:

1.Hierarchical Level Dimension
2.Data Type Dimension
3.Composite or Complex Objects Dimension
4.Transaction Type Dimension

The intent of specifying these four dimensions is to
provide the requisite framework for the necessary rules and
lock types that follow in later sections.  These dimensions are
designed to be complete so that all issues of concurrency relate
to at least one of the dimensions.

Hierarchical DimensionHierarchical DimensionHierarchical DimensionHierarchical DimensionHierarchical Dimension
The hierarchical dimension refers to the generalization/

specialization property in object–oriented databases (Smith &
Smith, 1977).  As noted in Figure 1, the notion of a hierarchy
is fundamental in object–oriented databases and concurrency
control in a hierarchical model is discussed at length in Gray
& Reuter (1993).  A fundamental characteristic of
concurrency control in a hierarchy is that a transaction updat-
ing an object is not at all independent due to the inheritance
property.  It might necessarily be true that updating an object
at a high level in the hierarchy would require that objects at
lower levels in the hierarchy also be locked.  If not, inconsis-
tencies could result.  This is not an issue in the relational model
as locking tables or records are independent.  That is, if a table
or a record needs to be updated, it is locked and there are no
effects that occur elsewhere in the database.

An example from Figure 1 is a transaction updating the
ComputerComputerComputerComputerComputer class definition.  A transaction that changes the
attribute Price (retail)Price (retail)Price (retail)Price (retail)Price (retail) necessarily affects other classes in the
hierarchy.  In other words, a transaction updates the PricePricePricePricePrice



3131313131Fall  1995

Journal of Database Management

(retail)(retail)(retail)(retail)(retail) attribute for instances by making a global change.  The
transaction might be increasing the Price (retail)Price (retail)Price (retail)Price (retail)Price (retail) attribute of
all instances of computers in the entire database by 10%.  This
transaction cannot be allowed to execute concurrently with a
transaction modifying the Price (retail)Price (retail)Price (retail)Price (retail)Price (retail) attribute for an in-
stance in a specific subclass.  One solution addressing the
hierarchical dimension is discussed in Gray & Reuter (1993).
Different lock types with specific definitions are presented in
[9] and include intent, share, and exclusive.

An example of the hierarchical locking is when an intent
mode lock is granted at a root node level before update mode
locks are granted at the leaf node level.  Then, if a conflicting
transaction attempts to set locks on a parent node, it will be
forced to wait until the initial transaction completes.  If not,
two conflicting transactions could set locks at different levels
of the hierarchy and update the database with inconsistent data
as shown in the example in the previous paragraph that
included a retail price increase.

Data Type DimensionData Type DimensionData Type DimensionData Type DimensionData Type Dimension
Differences between the types of data that are being used

in a transaction should be addressed in a CC scheme designed
for object–oriented databases.  Transactions that update in-
stances, class definitions, aggregate data, and methods are
fundamentally different.

In the Class Hierarchy Example in Figure 1, consider
transaction T1 that reads a value {Architecture_Type} (at-
tribute A3) from instance I1 (COMPAQ Model A), of the class
IBM Standard (class reference number 1.2.3).  Also consider
transaction T2 that modifies the class definition of IBM
Computers by adding an attribute {Video_Bus} (attribute 2).
These two transactions are distinct as one is reading the value
of an instance while the other is adding a class attribute.  Under
many CC schemes, these transactions would be incompatible
as they are operating at the same class level.  Though both of
these transactions are operating at the same class level, they
can be treated separately and thus, they are not incompatible.
The results of exploiting the semantics of the data type results
in higher levels of concurrency and higher levels of through-

put.

Composite DimensionComposite DimensionComposite DimensionComposite DimensionComposite Dimension
A CC mechanism in an object–oriented database should

facilitate composite objects.  A composite object is defined as
a collection of heterogenous objects to form a single object
(Kim, 1990).  The simple objects continue to be maintained in
the system as separate entities, but the link to form a complex
object significantly increases the flexibility of the database.
Composite objects are commonly used in manufacturing ap-
plications: For example, cars (a composite object) are formed
from many parts (which can be simple objects or in turn,
complex objects formed from still more basic parts).  The
ability to form composite objects increases the flexibility for
software engineers and thus, is significant in object–oriented
databases.

If the definition of ComputerComputerComputerComputerComputer in Figure 1 is changed in
the system, it is necessary to not only lock the class definition
of ComputerComputerComputerComputerComputer, it is also necessary to lock the component
objects of ComputerComputerComputerComputerComputer to ensure consistency.  The only compo-
nent object of ComputerComputerComputerComputerComputer is Secondary StorageSecondary StorageSecondary StorageSecondary StorageSecondary Storage.  Kim, in [11]
differentiates between component objects such SecondarySecondarySecondarySecondarySecondary
StorageStorageStorageStorageStorage and a weak attribute such as
Computer_ManufacturerComputer_ManufacturerComputer_ManufacturerComputer_ManufacturerComputer_Manufacturer (class 1.0.1).  The distinction is
useful as composite objects have the part–of relationship
while weak attributes do not.  Identifying the composite
dimension as critical for concurrency control allows flexibil-
ity as well as an opportunity to increase performance.   Pro-
ceeding to lock each individual object before the composite
object can be locked would result in a degradation of perfor-
mance. Thus, building a CC mechanism with composite
objects specifically in mind will result in increased perfor-
mance.

Transaction Type DimensionTransaction Type DimensionTransaction Type DimensionTransaction Type DimensionTransaction Type Dimension
Ultimately, an operation will perform one of two func-

tions on an item of data; a read or a write.  As explained in the
section on two–phase locking, two separate operations can

Table 2: Rules to Dimensions MappingTable 2: Rules to Dimensions MappingTable 2: Rules to Dimensions MappingTable 2: Rules to Dimensions MappingTable 2: Rules to Dimensions Mapping
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read the same item of data without resulting in inconsistencies.
A potential problem exists when a write operation is per-
formed on an item of data.  If an item of data will be written by
a given operation, no other operations can be allowed access
to the data item (whether they be read or write operations) until
the item of data is released by the initial write operation.  If this
were not true, we could observe lost update problems, dirty
read problems, or phantom data problems (Bernstein, et al.,
1987).  It is thus important to distinguish between read and
write operations in order to increase concurrency levels.

Rules of the Object–Oriented Concurrency ControlRules of the Object–Oriented Concurrency ControlRules of the Object–Oriented Concurrency ControlRules of the Object–Oriented Concurrency ControlRules of the Object–Oriented Concurrency Control
MechanismMechanismMechanismMechanismMechanism

Some basic rules are introduced in this section that O2C2

must follow in order to ensure consistency.  These rules are
designed to address issues related to the four dimensions
previously discussed.  As such, the rules as shown in Table 2
are listed along with the dimension to which it applies.  It
should be noted that some rules address issues related to more
than one dimension.  The purpose of these rules is to provide
a basis for evaluating O2C2.

Rule 1 - Hierarchical, Transaction typeRule 1 - Hierarchical, Transaction typeRule 1 - Hierarchical, Transaction typeRule 1 - Hierarchical, Transaction typeRule 1 - Hierarchical, Transaction type.  For instances
that will be updated, the hierarchy must be locked in an upward
direction with an intent lock type.  This must occur so that no
transaction could perform an operation at a very coarse level
that would conflict with a transaction updating an instance (an
operation at a fine level).  An example from the class hierarchy
is a transaction that updates the PricePricePricePricePrice attribute for a DesktopDesktopDesktopDesktopDesktop
ComputerComputerComputerComputerComputer.  This would conflict with a transaction acting at
the ComputerComputerComputerComputerComputer object level attempting to increase PricePricePricePricePrice for all
instances by 10%.  Concurrency control must be operational
so that these transactions do not produce inconsistent results.
No locking will need to occur “down” the hierarchy though
because of an instance update.  The hierarchy will have an
intent lock type that is either shareable or exclusive depending
on whether the operation is a read or a write.

Rule 2 – Data Type, Transaction TypeRule 2 – Data Type, Transaction TypeRule 2 – Data Type, Transaction TypeRule 2 – Data Type, Transaction TypeRule 2 – Data Type, Transaction Type. . . . . Instances them-
selves can only be locked with an explicit read or write lock.
Classes can be locked in a variety of manners including intent,
shareable, and exclusive.

Rule 3 – Data Type, CompositeRule 3 – Data Type, CompositeRule 3 – Data Type, CompositeRule 3 – Data Type, CompositeRule 3 – Data Type, Composite..... If the data type that is
being updated is aggregate data, locks will need to be placed
on all instances in the class and subclasses that form the
aggregate data.  There is no need to lock superclasses in the
hierarchy as it is usually the case that aggregate data is stored
or calculated at the highest level in the hierarchy where
aggregation starts.

Rule 4 – Data TypeRule 4 – Data TypeRule 4 – Data TypeRule 4 – Data TypeRule 4 – Data Type..... An operation on a class definition
is considered to be separate from an operation on an instance.
As new attributes are added, all the old instances must be
updated to reflect the changes.  Inconsistencies will not result
because of updating a class definition simultaneously with
creating instances using that class definition.  Several in-
stances may have to be updated if a class definition is altered

because they will be out of date with the new structure, but the
update will not make existing data inconsistent.

Rule 5 – Transaction Type, Data TypeRule 5 – Transaction Type, Data TypeRule 5 – Transaction Type, Data TypeRule 5 – Transaction Type, Data TypeRule 5 – Transaction Type, Data Type..... Some transac-
tions need to perform operations on all or most of the instances
in a class.  To minimize the number of locks that need to be
held, a lock type that explicitly locks all instances of a class for
one transaction is necessary.  This lock type should exist for
both read and write operations.

Rule 6 – Hierarchical, Data Type, Composite Objects,Rule 6 – Hierarchical, Data Type, Composite Objects,Rule 6 – Hierarchical, Data Type, Composite Objects,Rule 6 – Hierarchical, Data Type, Composite Objects,Rule 6 – Hierarchical, Data Type, Composite Objects,
Transaction Type.Transaction Type.Transaction Type.Transaction Type.Transaction Type.  Occasionally, a single transaction needs to
perform operations on most of the instances in a class as well
as class definitions.  The same transaction may also need to
calculate aggregate information or manipulate composite ob-
jects.  It would be convenient to have one lock type that locks
all the instances of a class, the class definition, and composite
objects if any exist.  This lock type should also handle either
read or write operations.

Rule 7 – Hierarchical, Data Type, Composite, Trans-Rule 7 – Hierarchical, Data Type, Composite, Trans-Rule 7 – Hierarchical, Data Type, Composite, Trans-Rule 7 – Hierarchical, Data Type, Composite, Trans-Rule 7 – Hierarchical, Data Type, Composite, Trans-
action Typeaction Typeaction Typeaction Typeaction Type..... An instance and a method are fundamentally
different with respect to possible inconsistencies.  An instance
can be updated by one transaction simultaneously with the
associated class definition update without causing inconsis-
tencies.  For example, when an attribute is added, old instances
would not have values for the new attribute, but that does not
cause data inconsistency.  Inconsistencies could result how-
ever, if a method were updated at the same time it was being
invoked by a transaction initiated at a specific class.  This is
true because a method is dynamic (it is being used by instances
and is being read and updated by transactions affecting the
class) and only one copy of the method is available.  It is thus
necessary to exclusively lock a method when it is in use by a
class or an instance.

Lock Types of   OLock Types of   OLock Types of   OLock Types of   OLock Types of   O22222CCCCC22222

It is important to understand which operations are com-
patible with other operations in O2C2.  After understanding
the compatibility of various types of locks, it is important to
understand how locks work in the hierarchy to effect
concurrency control.  Like other studies that examine hierar-
chical locking  (Cart & Ferrie, 1992; Gray & Reuter, 1993;
Kim, 1990), a compatibility matrix is presented in Table 4
after the lock types are explained in Table 3.  As is the case in
most compatibility matrixes, the current operation and the
requested operation require the same item of data or the same
class.  For example, two transactions requesting an instance
read (R) on the same instance are compatible whereas two
operations requesting a write (W) operation on the same item
data are not compatible.

DiscussionDiscussionDiscussionDiscussionDiscussion

Some important points must be noted about the compat-
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ibility matrix listed in Table 4 that shows the O2C2 lock types
and their compatibility with one another.   First, it has typically
been standard that a write instance (W)(W)(W)(W)(W) lock type is not
compatible with an intention to write lock (IW)(IW)(IW)(IW)(IW) from another
transaction (Cart & Ferrie, 1992; Gray & Reuter, 1993; Kim,
1990).  This is somewhat curious as it has also been standard
that two IW IW IW IW IW locks on a class or a hierarchy of classes are
compatible.  In this proposal however, one transaction is able
to hold a write lock on an instance while another transaction
simultaneously holds an intention lock on the hierarchy where
the updated instance exists.

Second, the difference between an instance and a
method is crucial.  This is highlighted in the compatibility
chart where it is shown that an instance write (W)(W)(W)(W)(W) is compat-
ible with a class definition write (CDW)(CDW)(CDW)(CDW)(CDW).  A method write

 Table 3:  OTable 3:  OTable 3:  OTable 3:  OTable 3:  O22222CCCCC22222 Lock Type Summary Lock Type Summary Lock Type Summary Lock Type Summary Lock Type Summary

Lock TypeLock TypeLock TypeLock TypeLock Type DescriptionDescriptionDescriptionDescriptionDescription

Intention Read (IR) This lock is placed on the class of an instance that is going to be read.  All superclasses of the initial class
are also IR locked.

Intention Write (IW) This lock is placed on the class of an instance that is going to be updated.  All superclasses of the initial class
are also IW locked.

Read (R) This lock can either be placed on a class or a single instance.  If it is placed on a class, all instances of that
class are read locked.  This lock allows an instance to be read.

Write (W) Whis lock can either be placed on a class or a single instance.  If it is placed on a class, all instances of that
class are write locked.  This lock allows an instance to be updated.

Method Read (MR) An intention read lock must be obtained on the method’s class  before this lock can be obtained on a method.
This lock is needed when a method is going to be read.

Method Write (MW) An intention write lock must be obtained on the method’s class  before this lock can be obtained on a method.
This lock is needed when a method is going to be updated.

Class Definition Read (CDR)     An intention read lock must be obtained on the class  before this lock can be obtained on the class definition.
This lock is needed when a class definition is going to be read.

Class Definition Write (CDW)   An intention read lock must be obtained on the class  before this lock can be obtained on the class definition.
This lock is needed when a class definition is going to be read.

(MW)(MW)(MW)(MW)(MW) however, is not compatible with a class definition write
(CDW)(CDW)(CDW)(CDW)(CDW).  This is true for the reasons listed in rule number
seven.  The primary benefit of this addition is that concurrency
will be increased as several instances can be accessed and
updated simultaneously even though many transactions hold
intent to write locks on the hierarchy.   As was previously
stated in the literature review, an increase in the number of
transactions concurrently executing is a major goal in
concurrency control research.

In the O2C2 mechanism, a class definition update is
compatible with an instance update in the same class because
of important assumptions concerning the system.  The over-
riding concern governing the O2C2 mechanism is that the
degree of concurrency be increased meaning that more “yes”

Table 4: Compatibility Matrix of Transaction and Data Types for OTable 4: Compatibility Matrix of Transaction and Data Types for OTable 4: Compatibility Matrix of Transaction and Data Types for OTable 4: Compatibility Matrix of Transaction and Data Types for OTable 4: Compatibility Matrix of Transaction and Data Types for O22222CCCCC22222 Requested Operation Requested Operation Requested Operation Requested Operation Requested Operation
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answers in the compatible lock types matrix is a key objective.
An instance update operation can proceed concurrently

with a class definition update in the same class.  The instance
update operation is given a copy of old the class definition that
is publicly available.  Once a class definition is updated, it
becomes publicly available and all new instances use it.  After
all instance update operations that used an old class definition
have either aborted or completed, the new class definitions are
applied to all instances of that class.

The implications are that class definitions updates are
allowed to proceed concurrently with instance updates.  This
is critical as class definitions are inherited and thus, if these
operations were not compatible, concurrency would be de-
creased.

In this mechanism, a transaction holds an intent lock on
a class hierarchy and then requests a write lock on the instance.
This two level locking approach is necessary as it protects
against a transaction setting a coarse lock on a hierarchy and
then make conflicting changes to an instance that is concur-
rently being updated by a transaction operating at the instance
level.

Achieving a high degree of concurrency in order to
maximize performance is one of the two critical objectives of
all CC mechanisms.  The other is guaranteeing correctness.
The discussion concerning the proof of correctness for the
O2C2 mechanism is beyond the scope of this paper but the
interested reader is directed to Olsen & Ram (1994).

Summary of Performance AnalysisSummary of Performance AnalysisSummary of Performance AnalysisSummary of Performance AnalysisSummary of Performance Analysis

The mechanism O2C2 has advantages over other ob-
ject–oriented database CC mechanisms.  First of all, it was
designed with a comprehensive framework which included
not only CC issues, but object–oriented database issues.  In
other words, the object–oriented database model was para-
mount in developing the framework.  The second advantage is
that O2C2 distinguishes between object types which increases
the degree of concurrency.  Transactions that would normally
be blocked under other CC algorithms can proceed because of
the object type distinction.

An excellent method of examining performance is
through simulation studies.  Empirical findings derived from
simulation studies regarding the performance of O2C2 are
reported in Olsen & Ram (1994).  The simulation studies
provides evidence that O2C2 is robust because it created
correct schedules under a variety of conditions including
conditions with a high number of transactions that caused
thrashing to occur.

There are many interesting findings concerning the
performance of O2C2.  First, transaction throughput is much
greater when a majority of the objects that are being read or
updated are instance objects.  As the number of method and
class definition objects increases relative to the number of

instance objects, transaction throughput is significantly re-
duced.

Another finding is actually a confirmation of other
studies using the relational model that showed that as the
number of active transactions increase, throughput increases
to a point.  Afterwards, thrashing effects are felt and through-
put decreases.  The fact that thrashing occurs comes as no
surprise but it is interesting to note that regardless of the mix
of object types, thrashing did not occur until 25% of the
database was either read or write locked.  This is a confirma-
tion of what was observed in the relational model and demon-
strates that O2C2 produces predictable results with regards to
the shape of the throughput curve.

Third, increasing the number of transactions that update
a given object decreases throughput.  Indeed, as the percentage
of write operations is increased, throughput decreases in an
exponential manner at all levels of activity but was most
pronounced at the highest levels of activity.  Again, this is a
confirmation of studies using other data models but it is
important to note that predictable results occur.

Fourth, locking class definitions was the most detrimen-
tal to throughput as opposed to locking methods or instance
objects.  This is true because the inheritance notion dictates
that a change to one class is inherited to the instances of all
subclasses.  Thus, locking a class definition can mean that
many more classes and instances would also have to be locked.
Knowing this, a database administrator might choose to
schedule structural changes to the database during off–peak
hours in order to maintain a higher level of concurrency and
thus faster response times.

ConclusionConclusionConclusionConclusionConclusion

The O2C2 mechanism provides distinct advantages over
other mechanisms and approaches in the object–oriented
database area for certain systems.  If the common transactions
in a system are standard and short–lived, then the O2C2

mechanism provides higher levels of throughput, faster over-
all response times, and higher levels of concurrency.  This
translates into more satisfied users as they will not be waiting
inordinate amounts of time for their transactions to complete.
If the common transactions in a system are long–lived, then
some type of versioning is appropriate.
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