INTRODUCTION

The challenges of performance measurement as a tool of project management in software engineering are twofold. On the one hand an efficiency control requires adequate metrics to assess the productivity of software development by means of input-output-relations. The multitude of existing metrics already clarifies the missing unambiguousness in this field: for an up to date and broad overview of software metrics research see Kitchenham (2010) and for details Anseimo and Ledgard (2003), Choi and Kim (2005), Foulds and West (2007), Kitchenham and Mendes (2004), Maxwell and Forselius (2000) or Pfleeger (2008). Farooqie and Farooquie (2009) provide empirical evidence on performance measurement. Yet, some problems arise by focusing metrics on traditional sequential software development processes instead of using incremental and iterative development (IID) techniques (Tan et al., 2009; Yu, 2010). On the other hand anticipative personnel project management aims to activate behaviour in accordance with the software development objectives. Requirements discussed in responsibility accounting, for example the realistic but challenging setting of objectives
or the controllability of influencing variables needed by developers, have to be fulfilled (e.g., Baker, 1992; Baker, 2002; Choudhury, 1986; Otley, 1999; Zimmerman, 2003).

Considering both starting points together, there is some room for improvement: oftentimes, widespread software metrics suppose simple structures of impact by focusing on coding and disregarding other input drivers such as design, analysis or management activities. Besides, the definition of output not only has to account for development progress measured in source lines of code (SLOC) but also for soft facts such as the fulfillment of customers’ demands for example. Hence, output has to be measured with a multi-criterial basis, which accounts for quantitative and qualitative indicators (Krishnan, Kriebel, Kekre, & Mukhopadhyay, 2000). Otherwise, a metric based on SLOC could signal high productivity, whereas in fact the outcome of the project is endangered. Possible risks are unfitting system architectures and user interfaces or the deficient consideration of all stakeholders’ needs. Such accumulation of overseen conceptual non-conformity and the thereby caused bias in productivity more likely deals with traditional process models which are lacking a permanent alignment of objectives. The well-known waterfall archetype for example assumes freezeed customer demands for all subsequent stages of development and thus implies a shift of risks towards the future and cost-intensive adjustments (see Figure 1).

Moreover, the clear assignment of input to a single project is hard to obtain when the same staff simultaneously work for several projects. Time-Driven Activity Based Costing (TDABC) - based on classical Activity Based Costing (ABC) - is a new approach for a better determination of cost and capacity utilisation of processes (Kaplan & Anderson, 2007). However, TDABC still contains elements of full costing and therefore is not an appropriate basis for decision-making. Even worse, it has been designed as a static accounting scheme while the long-lasting process of developing complex software systems requires an accounting scheme such as lifecycle costing (LCC) which accounts for time preferences. Only some attempts have been made to combine ABC and LCC-elements (e.g., Emblemøvåg, 2003). Besides, precise project-specific milestones and, linked to that, milestone-depending cost objectives are needed to allow for an ongoing performance measurement. They have to deal with the complexity of software development (see

Figure 1. Value at risk due to errors made in the early phases of the waterfall process increases as the project goes on.
Related Content

3D Object Modeling using Sketches
www.irma-international.org/article/object-modeling-using-sketches/58559/

Introducing GIS for Business in Higher Education
www.irma-international.org/chapter/introducing-gis-business-higher-education/22769/

Knowledge Management Strategies for Virtual Organisations
www.irma-international.org/article/knowledge-management-strategies-virtual-organisations/1205/

Geographic Information Systems as Decision Tools
www.irma-international.org/chapter/geographic-information-systems-decision-tools/13795/

Enhanced-Adaptive Pattern Attack Recognition Technique (E-APART)
Against EDoS Attacks in Cloud Computing
Rohit Thaper and Amandeep Verma (2015). Teaching Cases Collection (pp. 41-55).
www.irma-international.org/article/enhanced-adaptive-pattern-attack-recognition-technique-e-apart-against-edos-attacks-in-cloud-computing/148165/