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Chapter 7
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An Adaptively Parameterised Model of
Associative Learning and Memory

L.P.L. McLaren
University of Exeter, UK

ABSTRACT

In this chapter the author will first give an overview of the ideas behind Adaptively Parameterised Error
Correcting Learning (APECS) as introduced in McLaren (1993). It will take a somewhat historical
perspective, tracing the development of this approach from its origins as a solution to the sequential
learning problem identified by McCloskey and Cohen (1989) in the context of paired associate learning,
to its more recent application as a model of human contingency learning.

BACKGROUND: THE SEQUENTIAL
LEARNING PROBLEM

The development of novel connectionist algo-
rithms (Rumelhart, Hinton, and Williams, 1986;
Ackley, Hinton, and Sejnowski, 1985) capable of
driving learning in multi-layer networks can be
seen as one of the major developments in cogni-
tive science in the nineteen-eighties. One of these
algorithms, Back Propagation (Rumelhart, Hinton,
and Williams, 1986) used gradient descentto learn
input / output relationships, and was typically
instantiated in feed-forward architectures. This
otherwise successful approach, however, came
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up against the sequential learning problem identi-
fied by McCloskey and Cohen (1989) and further
analysed by Ratcliff (1990). A general statement
of this problem is that if a network employing
Back Propagation is first taught one set of input
/ output relations, and then some other mapping
is learnt whose input terms are similar to those
first used in training, then a near complete loss of
performance on the first mapping is observed on
test. We can say that the new learning wipes out
the old. This is not a necessary characteristic of
the feed-forward architecture, because, if training
alternates between the two mappings, repeatedly
teaching first one and then the other, eventually a
solution is reached that captures both sets of input
/ output relationships. Thus, this “catastrophic
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interference”, when new learning erases old, is
only seen if the two mappings are learnt in se-
quence. This does not mean that this property of
the learning algorithm can be ignored, however,
as learning (in humans and networks) often takes
place within a sequential format (eg see Ratcliff,
1990; Hinton and Plaut, 1987; Sejnowski and
Rosenberg, 1987).

As a simple example of this general type of
problem, consider modelling a paired-associate
experiment (based on Barnes and Underwood,
1959) in which human subjects are required to
learn a list (list 1) of eight nonsense syllable -
adjective pairs to a criterion of 100%. That is,
after some number of training trials, the subject
is able to provide the correct adjectival response
to each nonsense syllable stimulus. After learn-
ing list 1, the subjects learn list 2, which employs
the same nonsense syllables as the first, but new
adjectives paired with them. Training continues
until subjects are near perfect on this list (>90%).
They are then asked to recall the original list 1
adjectival responses for each nonsense syllable.
Performance drops to around 50% for this list,
which is taken to be an instance of retroactive
interference (control groups suggest that it is not
simply the passage of time that is responsible for
this decline in performance).

As McCloskey and Cohen (1989) showed,
this task can be modelled in a feed-forward two
layer network running Back Propagation. The list
‘context’ and the nonsense syllables (eg dax, teg)
are the input, and the adjectives (e.g. regal, sleek)
are the output (see Figure 1 which shows both the
network in question and the experimental design).

After cycling through the list several times,
activation of the input nodes representing list
context in conjunction with a nonsense syllable
results in the activation of the output nodes cor-
responding to the correct adjective via the set of
connection strengths or weights developed by the
network. During learning of the second list, nodes
standing for the List 2 context are used in conjunc-
tion with the old nonsense syllable nodes, to-
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gether with extra output nodes representing the
new adjectives (keen, swift). Training proceeds
until activation of nodes representing List 2 + dax
(for example) results in activation of the ‘keen’
node. Now, List 1 recall can be tested by present-
ing List 1 + dax as input. The result produced by
the network is — ‘keen’. There is no sign of previ-
ously having learnt ‘regal’ to this input. McClo-
skey and Cohen were able to show that even
minimal training on List 2 resulted in (at best!)
nearly complete loss of List 1 on test, rather than
the 50% loss shown in humans (at worst). This
result does not depend on the local coding scheme
employed here, as they obtained the same outcome
using distributed representations of contexts,
stimuli and responses.

Figure 2 gives simulation results for this
sequential learning task employing a two item
list and employing a modified version of Back
Propagation that is used throughout this paper.
Despite these minor differences, the results are the
same as those reported by McCloskey and Cohen.

Aftertraining on List 1 until performance meets
their “within 0.1” criterion on test, i.e. activation
of an input pattern produces the correct response
to within 0.1 of each node’s target activation
level, learning the List 2 items to the same crite-
rion powerfully degrades List 1 performance. In
fact, testing on List 1 now fails to meet a “best
match” criterion which requires that the output
be more similar to the target response than to any
of the other possible responses in the lists. Anal-
ysis of these simulation results indicates that the
difficulty facing the network is that the initial List
1 solution (i.e. the weights) is not one that can
survive learning of List 2, because the List 1 re-
sponses to the nonsense syllables have to be
suppressed in some fashion, and once this is done
they cannot be recovered. Only when the lists are
alternated during training can a List 1 solution
that is protected from the effects of List 2 learning
be developed (an example is shown in Figure 3).
In fact, if the network was alternated on the two
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