Secure Robust Hash Functions and Their Applications in Non-Interactive Communications

Qiming Li, Institute for Infocomm Research, Singapore
Sujoy Roy, Institute for Infocomm Research, Singapore

ABSTRACT

A robust hash function allows different parties to extract a consistent key from a common fuzzy source, e.g., an image gone through noisy channels, which can then be used to establish a cryptographic session key among the parties without the need for interactions. These functions are useful in various communication scenarios, where the security notions are different. The authors study these different security notions in this paper and focus on forgery attacks, where the objective of the attack is to compute the extracted key (hash value) of a given message. This paper will examine information-theoretical security against forgery under chosen message attacks. The authors prove that it is not possible due to the entropy of the hash value of a given message can be reduced arbitrarily when sufficient message/hash pairs have been observed. In this regard, the authors give a computationally secure scheme, where it is computationally infeasible to compute the hash value even when its entropy may not be high.

Keywords: Cryptographic Session Key, Forgery Attacks, Non-Interactive Communication, Robust Hash, Security

INTRODUCTION

A robust hash H is a function that maps an input message $X \in U$ to a binary string $b \in \{0,1\}^*$ such that, when given another message $X' \in M$ where X' is close to X, the hash of X' remains the same as b with high probability. In this regard, a robust hash function is different from a cryptographic hash function, which does not tolerate even a single bit of error. Furthermore, the domain M can be real-valued, e.g., M can be feature vectors extracted from images.

Robust hash functions are very useful in secure non-interactive communications, where two or more parties wish to derive a session key from a common fuzzy source without interaction. Such a session key can then be used, for example, in identity verification or encryption.

A typical application scenario of robust hash functions is the protection against copying attacks, where attackers attempt to copy a legitimate watermark from a marked multimedia object to an unmarked object (Kutter et al., 2000; Craver et al., 1998). In such scenarios,
we could use a watermark that is dependent on
the content of the multimedia object. To achieve
this, a robust hash function could be employed
to extract a key from the given multimedia
object, and then a watermark could be generated
from the extracted key. In this case, the
communication parties would be the watermark
embedder and detector, where the multimedia
object serves both as a communication channel
and the common fuzzy source to generate the
watermarking key.

In this scenario, we would require that
the hash function should be robust against the
noise expected in the actual watermarking ap-
lication, yet it should be difficult (if possible
at all) to estimate this key generation process
for an unmarked object.

We note that the central part of the above
security application is the extraction of the
session key from the common fuzzy source.
Therefore, in this paper, we are concerned with
the more abstract key extraction scenario as
illustrated in Figure 1. Suppose two parties A
and B have access to some correlated random
sources X and X' respectively (e.g., X and
X' could be the picture of the same scene
taken at different times of the day), and they
wish to agree on a common (secret) session key
based on their own random source without
communication. In this case, a keyed robust
hash function \(H(\cdot) \) can be applied to allow
both parties to generate the same hash \(b \) using
a shared key \(K \). This allows both to decide
upon a session key that they can use to do
various tasks without directly using their shared
secret key or exchanging any information as
required by common key agreement protocols.

As we can see from Figure 1, if \(X \) is an
original multimedia object, and \(X' \) is a wa-
termarked object obtained by embedding a
digital watermark into \(X \), then the hash \(b \) that
can be consistently extracted can be used to
validate the authenticity of the multimedia
object. Nevertheless, such a consistent string
\(b \) can be used in many other scenarios, where
it is desirable to extract a consistent key from
noisy data.

Despite the potentials of robust hash func-
tions, it is often not easy to analyze the security.
This is perhaps partly due to the complexity of
the interactions among many different param-
ters, which affect the robustness and security
(such as collision and forgery resistance), and
partly due to the lack of clear threat and attack
models.

Roughly speaking, robustness of a robust
hash function measures its tolerance to permis-
sible noise, and collision resistance measures
the difficulty of an attacker finding two dis-
similar messages that yield the same hash
value (more precise definitions will be given
in later sections).

In this paper, we study forgery resistance
of robust hash functions (Swaminathan et al.,
2006), which measures the difficulty for attack-
ers to compute the hash value of a given message
without knowing the secret key. Similar to set-
tings used by Swaminathan et al. (2006), we
first investigate information theoretical secu-
ritv measured by conditional entropy. How-
ever, instead of considering just one message
\(X_1 \) and its hash \(b_1 \), we consider chosen mes-
sage attacks, where the attacker is allowed to

Figure 1. Session key extraction

\[
\begin{array}{c}
X \\
\downarrow \quad \downarrow \\
A \quad \times \quad B \\
\downarrow \quad \downarrow \\
b = H(X, K) \\
\end{array}
\quad
\begin{array}{c}
X' \\
\downarrow \\
b = H(X', K)
\end{array}
\]

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Related Content

Evaluation Method of Public Transportation System Based on Fuzzy Cloud Model

Palmprint Recognition Based on Subspace Analysis of Gabor Filter Bank
www.irma-international.org/article/palmprint-recognition-based-subspace-analysis/47068/

Collision Analysis and Improvement of a Parallel Hash Function based on Chaotic Maps with Changeable Parameters

Random Grid and Reversible Watermarking-Based On Verifiable Secret Sharing for Outsourcing Images in Cloud

Towards Checking Tampering of Software
www.irma-international.org/chapter/towards-checking-tampering-software/50723/