Chapter XV

Success Surrogates in Representational Decision Support Systems

Roger McHaney
Kansas State University, USA

Timothy Paul Cronan
University of Arkansas, USA

When corporate difficulties arise, technology and new software development are often embraced as part of the solution. The modern manager has a wide variety of decision making aids at his or her disposal. One such aid, classified as a representational decision support system, is discrete event computer simulation. In order to assess the organizational impact of discrete event computer simulation, an instrument capable of measuring success is required. The importance of such assessment cannot be overemphasized. While empirical measurement of various information system inputs or independent variables such as information system budget expenditures or user participation is relatively straightforward, the development of corresponding output or dependent variables has been difficult. In an attempt to overcome these difficulties, researchers have suggested a variety of measurable surrogates. Work in this area has paved the way for the development of instruments used to assess success.

This chapter focuses on external validity aspects of two popular information system instruments, the Davis measure of User Acceptance of Information Technology and the Doll and Torkzadeh measure of End-User Comput-
End user application of representational decision support systems is a popular technology that is in widespread use in business and industry (McHaney and White, 1998). A primary manifestation of the representational DSS is computer simulation (McHaney and Cronan, 2000). A computer simulation involves the modeling of a process or system in such a way that the model mimics the response of the actual system to events that take place over time” (Schriber, 1987). In other words, simulation is simply using a computer to imitate the behavior of a complicated system and thereby gain insight into the performance of that system under a variety of circumstances. Within this context, computer simulation can be classified as a decision support tool.

Discrete event computer simulation can be broken into two categories, simulation languages and simulators. A simulation language is a versatile, general purpose class of simulation software that can be used in a multitude of different modeling applications. These languages are comparable to FORTRAN, BASIC, COBOL or C, but have specific features to facilitate the modeling process. Some examples of simulation languages are GPSS/H, SLAM II, SIMSCRIPT II.5, and SIMAN V.

Simulation language features aid in the modeling process and free the simulation analyst from the drudgery of recreating certain software procedures used by virtually all modeling applications. As a result these specialized languages have become powerful tools for modeling. Most simulation languages provide the features illustrated in Table 1.
Related Content

Information Systems Project Management Risk: Does it Matter for Firm Performance?
www.irma-international.org/article/information-systems-project-management-risk/132977/

Relating Cognitive Problem-Solving Style to User Resistance
www.irma-international.org/chapter/relating-cognitive-problem-solving-style/18283/

A Social Capital Perspective on IT Professionals’ Work Behavior and Attitude
www.irma-international.org/chapter/social-capital-perspective-professionals-work/69617/

The Changing Environment of Software Copyright: The Case of Apple Computer v. Microsoft Corp.
www.irma-international.org/article/changing-environment-software-copyright/55652/

Framework for Cognitive Skill Acquisition and Spreadsheet Training
www.irma-international.org/article/framework-cognitive-skill-acquisition-spreadsheet/3762/