
119

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

Knowledge, Truth, and Values
in Computer Science

Timothy Colburn
University of Minnesota, USA

Gary Shute

University of Minnesota, USA

INTRODUCTION

Computer science, insofar as it is concerned with
the creation of software, shares with mathematics
the distinction of creating its own subject matter
in the guise of formal abstractions. We have ar-
gued (Colburn & Shute, 2007), however, that the
nature of computer science abstraction lies in the
modeling of interaction patterns, while the nature
of mathematical abstraction lies in the modeling
of inference structures. In this regard, computer
science shares as much with empirical science as
it does with mathematics.

But computer science and mathematics are
not alone among disciplines that create their
own subject matter; the engineering disciplines
share this feature as well. For example, although
the process of creating road bridges is certainly
supported by activities involving mathematical
and software modeling, the subject matter of the
civil engineer is primarily the bridges themselves,
and secondarily the abstractions they use to think
about them.

Engineers are also concerned, as are computer
scientists, with interaction patterns among aspects
of the objects they study. The bridge engineer
studies the interaction of forces at work on bridge

ABSTRACT

Among empirical disciplines, computer science and the engineering fields share the distinction of creat-
ing their own subject matter, raising questions about the kinds of knowledge they engender. The authors
argue that knowledge acquisition in computer science fits models as diverse as those proposed by Piaget
and Lakatos. However, contrary to natural science, the knowledge acquired by computer science is not
knowledge of objective truth, but of values.

DOI: 10.4018/978-1-61692-014-2.ch008

120

Knowledge, Truth, and Values in Computer Science

superstructure. The automotive engineer studies
the interaction of motions inside a motor. But the
interaction patterns studied by the engineer take
place in a physical environment, while those stud-
ied by the software-oriented computer scientist
take place in a world of computational abstractions.
Near the machine level, these interactions involve
registers, memory locations, and subroutines. At
a slightly higher level, these interactions involve
variables, functions, and pointers. By grouping
these entities into arrays, records, and structures,
the interactions created can be more complex and
can model real world, passive data objects like
phone books, dictionaries, and file cabinets. At a
higher level still, the interactions can involve ob-
jects that actively communicate with one another
and are as various as menus, shopping carts, and
chat rooms.

So computer science shares with mathemat-
ics a concern for formal abstractions, but it parts
with mathematics in being more concerned with
interaction patterns and less concerned with in-
ference structures. And computer science shares
with engineering a concern for studying interac-
tion patterns, but it parts with engineering in that
the interaction patterns studied are not physical.
Left out of these comparisons is the obvious one
suggested by computer science’s very name:
What does computer science share with empirical
science? In this chapter we will investigate this
question, along with the related question: What
is the nature of computer science knowledge?

METAPHOR AND LAW

We were led to these questions, interestingly,
when, in our study of abstraction in computer
science, we found ourselves considering the
role of metaphor in computer science (Colburn
& Shute, 2008). Computer science abounds in
physical metaphors, particularly those centering
around flow and motion. Talk of flow and mo-
tion in computer science is largely metaphorical,

since when you look inside of a running computer
the only things moving are the cooling fan and
disk drives (which are probably on the verge of
becoming quaint anachronisms). Still, although
bits of information do not “flow” in the way that
continuous fluids do, it helps immeasurably to
“pretend” as though they do, because it allows
network scientists to formulate precise mathemati-
cal conditions on information throughput and to
design programs and devices that exploit them.
The flow metaphor is pervasive and finds its way
into systems programming, as programmers find
and plug “memory leaks” and fastidiously “flush”
data buffers. But the flow metaphor is itself a spe-
cial case of a more general metaphor of “motion”
that is even more pervasive in computer science.
Descriptions of the abstract worlds of computer
scientists are replete with references to motion,
from program jumps and exits, to exception throws
and catches, to memory stores and retrievals, to
control loops and branches. This is to be expected,
of course, since the subject matter of computer
science is interaction patterns.

The ubiquitous presence of motion metaphors
in computer science prompted us to consider
whether there is an analogue in computer science to
the concern in natural science with the discovery of
natural laws. I.e., if computer science is concerned
with motion, albeit in a metaphorical sense, are
there laws of computational motion, just as there
are laws of physical motion? We concluded (Col-
burn & Shute, 2010) that there are, but they are
laws of programmers’ own making, and therefore
prescriptive, rather than descriptive in the case of
natural science. These prescriptive laws are the
programming invariants that programmers must
first identify and then enforce in order to bring
about and control computational processes so that
they are predictable and correct for their purposes.
The fact that these laws prescribe computational
reality rather than describe natural reality is in
keeping with computer science’s special status,
that it shares with mathematics and engineering,
as creating the subject matter that it studies. This

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/knowledge-truth-values-computer-science/43694

Related Content

Does a Functioning Mind Need a Functioning Body? Some Perspectives from Postclassical

Computation
Colin G. Johnson (2005). Visions of Mind: Architectures for Cognition and Affect (pp. 275-289).

www.irma-international.org/chapter/does-functioning-mind-need-functioning/31028

The Role of Affect and Emotion in Language Development
Annette Hohenberger (2011). Affective Computing and Interaction: Psychological, Cognitive and

Neuroscientific Perspectives (pp. 208-243).

www.irma-international.org/chapter/role-affect-emotion-language-development/49536

Elliptical Slot Microstrip Patch Antenna Design Based on a Dynamic Constrained Multiobjective

Optimization Evolutionary Algorithm
Rangzhong Wu, Caie Hu, Zhigao Zeng, Sanyou Zengand Jawdat S. Alkasassbeh (2021). International

Journal of Cognitive Informatics and Natural Intelligence (pp. 1-15).

www.irma-international.org/article/elliptical-slot-microstrip-patch-antenna-design-based-on-a-dynamic-constrained-

multiobjective-optimization-evolutionary-algorithm/273156

A Framework to Extract Arguments in Opinion Texts
María Paz García-Villalbaand Patrick Saint-Dizier (2012). International Journal of Cognitive Informatics and

Natural Intelligence (pp. 62-87).

www.irma-international.org/article/framework-extract-arguments-opinion-texts/74163

Neurophysiology of Emotions
Aysen Erdemand Serkan Karaismailoglu (2011). Affective Computing and Interaction: Psychological,

Cognitive and Neuroscientific Perspectives (pp. 1-24).

www.irma-international.org/chapter/neurophysiology-emotions/49527

http://www.igi-global.com/chapter/knowledge-truth-values-computer-science/43694
http://www.irma-international.org/chapter/does-functioning-mind-need-functioning/31028
http://www.irma-international.org/chapter/role-affect-emotion-language-development/49536
http://www.irma-international.org/article/elliptical-slot-microstrip-patch-antenna-design-based-on-a-dynamic-constrained-multiobjective-optimization-evolutionary-algorithm/273156
http://www.irma-international.org/article/elliptical-slot-microstrip-patch-antenna-design-based-on-a-dynamic-constrained-multiobjective-optimization-evolutionary-algorithm/273156
http://www.irma-international.org/article/framework-extract-arguments-opinion-texts/74163
http://www.irma-international.org/chapter/neurophysiology-emotions/49527

