Chapter 25

Collaborative Online Roleplay for Adult Learners

Paul Pivec
Deakin University, Australia

Maja Pivec
University of Applied Sciences, Austria

ABSTRACT

Game-based learning has gained popularity in schools and has been proposed for adult education, both at Universities and in the corporate training sector. Games are becoming a new form of interactive content and game playing provides an interactive and collaborative platform for learning purposes. Collaborative learning allows participants to produce new ideas as well as to exchange information, simplify problems, and resolve the tasks. Context based collaborative learning method is based on constructivist learning theory and guides the design of the effective learning environments. In this environment the teacher or trainer becomes the active partner, moderator and advisor of the educational process, not just a repository of the information importing his or her own knowledge to a passive learner as in traditional education. Learners bring their prior skills and knowledge to the classroom community. The trainer structures learning situations in which each learner can interact with other learners to develop new knowledge and fashion their own needs and capacities. Knowledge is generated from experience with complex tasks rather than from isolated activities like learning and practicing separately. Skills and knowledge are best acquired within the context. This helps the learners easily to transfer learning from classroom to “real life” and back, or information from one subject to another. Therefore this method requires that the trainer and learners play nontraditional roles such as interaction and collaboration with each other within the educational process. The classroom drops the physical boundaries and becomes a goal-oriented platform dedicated to learning. Online role-play scenario platforms offers an environment where trainers can define their own role-playing scenarios and provide the opportunity for learners to apply factual knowledge and to gain experience through the digital world. Trainers can define new games or adopt and modify sample games without any programming skills. Some platforms provide a variety of communication means within the scenarios; players can communicate with the use of multimedia discussion forums, text and voice chat modules, as well as

DOI: 10.4018/978-1-61520-781-7.ch025
through multi-user video conferencing. These platforms foster participation in problem-solving, effective communication, teamwork, project management, as well as other soft skills such as responsibility, creativity, micro-entrepreneurship, corporate culture, and cultural awareness. They are designed for use as a supplement to normal in-class teaching and corporate training, but it is also possible to be used independently from a class course. The constructivist design required for successful Game-Based Learning will be discussed and a model is provided to display how Game-Based Learning occurs in a collaborative online environment. This chapter will present example scenarios and highlight resources available to interested teachers and trainers.

INTRODUCTION

Many studies have investigated the learning aspects of computer games and how they can be used for teaching skills and knowledge. Pillay (2003) studied groups of children playing computer games and their subsequent ability to complete instructional tasks. “The findings suggest that playing recreational computer games may influence performance on subsequent computer-based educational tasks” (p.1). This suggests that either cognitive ability has been increased while playing computer games, or the focus and motivation for completing subsequent computer-based tasks has been enhanced. In an extensive literature review on educational multiplayer games, McGrenere (1996) summarised two studies measuring the success of using computer technology for learning. McGrenere findings were similar to those of Butler (1988), who concluded that by using games for learning:

1. the time to learn information is reduced;
2. performance is increased through greater interest;
3. learners are motivated to participate; and
4. learner attendance is increased.

McGrenere (1996) suggested that computer “games and simulations can be equally as good or better than traditional teaching” (p.19). Many educators and researchers agree with McGrenere and argue that video games have the potential to enhance learning (Malone, 1981; Ramsberger et al., 1983; Malone & Lepper, 1987; Donchin, 1989; Thomas & Macredie, 1994; Ruben, 1999). Some state that the characteristics of electronic games create an immersive environment, focusing the player’s attention and potentially increasing the uptake of knowledge (MacMahan, 2003; Paras & Bizzocchi, 2005; Gentile, 2005; Kearney, 2006). What is generally accepted, is that the game environment, electronic or otherwise, can provide the motivation necessary to invoke a persistent re-engagement by the player, thereby improving the chances of the desired learning outcomes to occur (Garris, Ahlers, & Driskell, 2002; Kearney & Pivec, 2007).

Several major reports that have been commissioned on the topic of educational games (Entertainment and Leisure Software Publishers Association, 2006; Federation of American Scientists, 2006; Facer, Ulicsak, & Sandford, 2007; Project Tomorrow, 2008) have implied that video games teach skills that relate to education and these skills transfer to business. They call for educational institutions at all levels to embrace the games community. These reports cite publications such as Menn (1993), who argues that only 50% of what is watched is learnt, yet 90% of what is experienced is mastered. Levy and Murnane (2004) conclude that although learning often focuses only on topics such as math and literacy, soft skills like communication, collaboration, and problem solving are not taught, and these are skills that industry requires. Klopfer (2008) advocates educational games as a method for teaching soft skills by allowing the players to
Related Content

Advances in Assessment of Students’ Intuitive Understanding of Physics through Gameplay Data

The In-Depth Science of the Tic-Tac-Toe Game
Mário António Ramalho (2012). *Handbook of Research on Serious Games as Educational, Business and Research Tools* (pp. 918-927).
[www.irma-international.org/chapter/depth-science-tic-tac-toe/64292/](www.irma-international.org/chapter/depth-science-tic-tac-toe/64292/)

Videogames and the Ethics of Care
[www.irma-international.org/article/videogames-ethics-care/56339/](www.irma-international.org/article/videogames-ethics-care/56339/)

Teachers and Students as Game Designers: Designing Games for Classroom Integration
[www.irma-international.org/chapter/teachers-students-game-designers/75796/](www.irma-international.org/chapter/teachers-students-game-designers/75796/)

Decoupling Aspects in Board Game Modeling
[www.irma-international.org/chapter/decoupling-aspects-board-game-modeling/63230/](www.irma-international.org/chapter/decoupling-aspects-board-game-modeling/63230/)