Chapter 3
Technology in Education: Integrating Contemporary Technology into Classroom Pedagogy as Foundation to a Practical Distance Learning

Hyacinth Eze Anomneze
Texas Southern University, USA

ABSTRACT
As the global economy moves into a complete dependence on information and technology, the United States has to revisit how information technology is used in schools. Schools no longer imply the actual building with administrative halls and student centers, but also distance learning possibilities. Distance learning is still encountering skepticism from some educators, both in the secondary and post secondary stages of learning. This untamed skepticism is the product of the remains from traditional educators who are yet to answer the what, where, when, who, why and how of modern technology in the classroom. Traditional education wants to teach technology as a core curriculum, to be assessed as such. The universal reality, on the other hand, is that technology is a global culture and language. American students, to some extent, determine how this culture and language is used and spoken, but the fear is that they are doing this outside of the classroom. The goal of technology education must be to make technology so comfortable that its transition to distance learning will be smooth. This is done by recognizing and using technology to motivate learners to want to learn and succeed.

INTRODUCTION
Socrates, the Greek philosopher, told his disciples, “By all means marry. If you get a good wife, you’ll be happy. If you get a bad one, you’ll become a philosopher and that is a good thing for any man.” Things have changed since time of this Greek thinker, but the Socratic idea of marriage is metaphorically similar to the use of technology in education: it is a win-win situation. By all means use technology in education. If you are successful, you will be happy (and students will be happier). If you are not successful, you will become a smart thinker and that is a good thing for any teacher and student. Whitney (2007) reflects that while many people use technology from dust till dawn to make
Technology in Education
decision, communicate, evaluate and distribute
information, the same level of technology use
cannot be found in schools; “schools which are
meant to prepare students for their future careers
in the ‘real’ world.”

BACKGROUND: THE WHY OF
TECHNOLOGY IN EDUCATION

Technology in educational is no longer an option;
the No Child Left Behind Act of 2001 makes
technology in education an objective. The law
(NCLB Act) states that, “every student should
be technologically literate by the eighth grade,
regardless of student background or family so-
cioeconomic status.” McAnear (2006) describes
technology in education as “magic.” She concludes
that it is magic because it makes complex things
simple or makes the impossible possible. A sound
technology in pedagogy should motivate students,
close their learning gap, and help them master
complex concepts.

As education moves away from the melting
pot theory, that is characterized by one approach
to teaching should fit all learners, to a better
appreciation of every learner as unique in both
learning style and socio-cultural identity, educa-
tion becomes a highly engaging environment.
Considering more diverse approaches to teaching,
Law (2006) suggests that educational research
into teaching methods should, “target those stu-
dents who learn through other modalities than
the customary linear-sequential approaches of
schools.” Law also observes that more research
in technology in education will find that learning with
technology will “benefit” all students, and will lead
to a “significant improvement and engagement in
learning from students classified as ‘at risk.’”
Put simply educational technology must be a tool
that increases every student’s learning opportuni-
ties (Dreier, 2006). A United States Department
of Education report agrees that, “students using
technology have a distinct advantage over similar
students who are not using technology” (Murray,
2001). Technology in education is not an optional
tool in learning, but a fundamental necessity that
every student must have and use in order to be
more competitive.

Technology in Schools

Not all technology use within an educational sys-
tem qualifies as technology in education. The use
of $180,000 for Radio Frequency Identification
(RFID) in Spring, Texas (Jones, 2006) on school
busses to fight kidnapping in a town that has
“never” had a kidnapping is a good preemptive
undertaking, but does not classify as technology
in education. Encouraging students, Wilder (2001)
notes, to play games on computer during free time,
withholding computer use from some students
as a punishment, and giving access to others as a
reward are not technology use for education. For
technology in education to be adequate it should
pass the social test. If the human is a social being
and learning is a social activity, it is only logical to
expect technology in education to make the social
growth of students easier. One way to accomplish
this is to motivate the student in such a way that
they would want to study the content. In order to
meet the mandate of the NCLB Act (provide a
reasonable opportunity for every student to learn
with technology) it is imperative that technology
be truly “easy and transparent” “cheap or free”
(McAnear, 2006).

An important component of technology in edu-
cation is availability and access (Gahala, 2006). A
National Center for Educational Statistics (cited
by Valdez, 2007) reports that there are virtually
“no differences in Internet access between poor
schools and wealthier schools any more.” While
this does not suggest that there is equity in tech-
nology availability between the rich and poor,
it give the impression that when it comes to the
most important technology tool, there is a level
playing field. Student today are more likely to
write a paper and make a presentation that draw
Related Content

A Complete Validated Learning Analytics Framework: Designing Issues from Data Preparation Perspective
www.irma-international.org/article/a-complete-validated-learning-analytics-framework/200984/

K-Nearest Neighbors Relevance Annotation Model for Distance Education
Xiao Ke, Shaozi Li and Donglin Cao (2013). *System and Technology Advancements in Distance Learning* (pp. 85-99).
www.irma-international.org/chapter/nearest-neighbors-relevance-annotation-model/68753/

Acknowledging the Distance Learner: The Role of the Student Voice in Enhancing the Quality of the Distance Learner’s E-Learning Experience
Trish Andrews (2013). *Outlooks and Opportunities in Blended and Distance Learning* (pp. 242-254).
www.irma-international.org/chapter/acknowledging-distance-learner/78409/

A Computer-Assisted Approach for Conducting Information Technology Applied Instructions
www.irma-international.org/chapter/computer-assisted-approach-conducting-information/53515/

ePortfolios and Technology: Customized for Careers
www.irma-international.org/article/eportfolios-technology-customized-careers/70916/