
191

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

An Introduction to
Reflective Petri Nets

Lorenzo Capra
Università degli Studi di Milano, Italy

Walter Cazzola
Università degli Studi di Milano, Italy

INTRODUCTION

Evolution is becoming a very hot topic in discrete-
event system engineering. Most systems are subject
to evolution during lifecycle. Think e.g. of mobile
ad-hoc networks, adaptable software, business
processes, and so on. Such systems need to be

updated, or extended with new features, during
lifecycle. Evolution can often imply a complete
system redesign, the development of new features
and their integration in deployed systems.

It is widely recognized that taking evolution into
account since the system design phase should be
considered mandatory, not only a good practice. The
design of dynamic/adaptable discrete-event systems
calls for adequate modeling formalisms and tools.

ABSTRACT

Most discrete-event systems are subject to evolution during lifecycle. Evolution often implies the devel-
opment of new features, and their integration in deployed systems. Taking evolution into account since
the design phase therefore is mandatory. A common approach consists of hard-coding the foreseeable
evolutions at the design level. Neglecting the obvious difficulties of this approach, we also get system’s
design polluted by details not concerning functionality, which hamper analysis, reuse and maintenance.
Petri Nets, as a central formalism for discrete-event systems, are not exempt from pollution when facing
evolution. Embedding evolution in Petri nets requires expertise, other than early knowledge of evolution.
The complexity of resulting models is likely to affect the consolidated analysis algorithms for Petri nets.
We introduce Reflective Petri nets, a formalism for dynamic discrete-event systems. Based on a reflective
layout, in which functional aspects are separated from evolution, this model preserves the description
effectiveness and the analysis capabilities of Petri nets. Reflective Petri nets are provided with timed
state-transition semantics.

DOI: 10.4018/978-1-60566-774-4.ch009

192

An Introduction to Reflective Petri Nets

Unfortunately, the known well-established formal-
isms for discrete-event systems lack features for
naturally expressing possible run-time changes
to system’s structure.

System’s evolution is almost always emulated
by directly enriching original design information
with aspects concerning possible evolutions. This
approach has several drawbacks:

all possible evolutions are not always •
foreseeable;
functional design is polluted by details re-•
lated to evolutionary design: formal mod-
els turn out to be confused and ambiguous
since they do not represent a snapshot of
the current system only;
evolution is not really modeled, it is speci-•
fied as a part of the behavior of the whole
system, rather than an extension that could
be used in different contexts;
pollution hinders system’s maintenance •
and reduces possibility of reuse.

Petri nets, for their static layout, suffer from
these drawbacks as well when used to model
adaptable discrete-event systems. The common
modeling approach consists of merging the Petri
net specifying the base structure of a dynamic sys-
tem with information on its foreseeable evolutions.
A similar approach pollutes the Petri net model
with details not pertinent to the system’s current
configuration. Pollution not only makes Petri net
models complex, hard to read and to manage, it
also affects the powerful analysis techniques/tools
that classical Petri nets are provided with.

System evolution is an aspect orthogonal to
system behavior, that crosscuts both system de-
ployment and design; hence it could be subject
to separation of concerns (Hürsch & Videira
Lopes, 1995), a concept traditionally developed
in software engineering. Separating evolution
from the rest of a system is worthwhile, because
evolution is made independent of the evolving
system and the above mentioned problems are

overcome. Separation of concerns could be ap-
plied to a Petri net-based modeling approach as
well. Design information (in our case, a Petri net
modeling the system) will not be polluted by non
pertinent details and will exclusively represent
current system functionality without patches. This
leads to simpler and cleaner models that can be
analyzed without discriminating between what is
and what could be system structure and behavior.
Reflection (Maes, 1987) is one of the mechanisms
that easily permits the separation of concerns.

Reflection is defined as the activity, both
introspection and intercession, performed by
an agent when doing computations about itself
(Maes, 1987). A reflective system is layered in
two or more levels (base-, meta-, meta-meta-level
and so on) constituting a reflective tower; each
layer is unaware of the above one(s). Base-level
entities perform computations on the application
domain entities whereas entities on the meta-level
perform computations on the entities residing on
the lower levels. Computational flow passes from
a lower level (e.g., the base-level) to the adjacent
level (e.g., the meta-level) by intercepting some
events and specific computations (shift-up action)
and backs when meta-computation has finished
(shift-down action). All meta-computations are
carried out on a representative of lower-level(s),
called reification, which is kept causally con-
nected to the original level. For details look at
Cazzola, 1998.

Similarly to what is done in Cazzola, Ghoneim,
& Saake, 2004, the meta-level can be programmed
to evolve the base-level structure and behavior
when necessary, without polluting it with extra
information. In Capra & Cazzola, 2007 we apply
the same idea to the Petri nets domain, defining a
reflective Petri net model (hereafter referred to as
Reflective Petri nets) that separates the Petri net
describing a system from the high-level Petri net
(Jensen & Rozenberg, 1991) that describes how
this system evolves upon occurrence of some
events/conditions. In this chapter we introduce
Reflective Petri nets, and we propose a simple

25 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/introduction-reflective-petri-nets/38262

Related Content

Resource-Aware Load Balancing of Parallel Applications
Eric Aubanel (2009). Handbook of Research on Grid Technologies and Utility Computing: Concepts for

Managing Large-Scale Applications (pp. 12-21).

www.irma-international.org/chapter/resource-aware-load-balancing-parallel/20504

Qualitative Evaluation of Multimedia Contents for Different Media Types and Media Quality
Kaoru Sugita, Ken Nishimuraand Tomoyuki Ishida (2015). International Journal of Distributed Systems and

Technologies (pp. 65-76).

www.irma-international.org/article/qualitative-evaluation-of-multimedia-contents-for-different-media-types-and-media-

quality/127083

Comparative Study on XEN, KVM, VSphere, and Hyper-V
Prashanta Kumar Das (2016). Emerging Research Surrounding Power Consumption and Performance

Issues in Utility Computing (pp. 233-261).

www.irma-international.org/chapter/comparative-study-on-xen-kvm-vsphere-and-hyper-v/139846

Lightweight Editing of Distributed Ubiquitous Environments: The CollaborationBus Aqua Editor
Maximilian Schirmerand Tom Gross (2013). Development of Distributed Systems from Design to

Application and Maintenance (pp. 168-184).

www.irma-international.org/chapter/lightweight-editing-distributed-ubiquitous-environments/72252

Load Balancing in Peer-to-Peer Systems
Haiying Shen (2010). Handbook of Research on Scalable Computing Technologies (pp. 163-190).

www.irma-international.org/chapter/load-balancing-peer-peer-systems/36408

http://www.igi-global.com/chapter/introduction-reflective-petri-nets/38262
http://www.irma-international.org/chapter/resource-aware-load-balancing-parallel/20504
http://www.irma-international.org/article/qualitative-evaluation-of-multimedia-contents-for-different-media-types-and-media-quality/127083
http://www.irma-international.org/article/qualitative-evaluation-of-multimedia-contents-for-different-media-types-and-media-quality/127083
http://www.irma-international.org/chapter/comparative-study-on-xen-kvm-vsphere-and-hyper-v/139846
http://www.irma-international.org/chapter/lightweight-editing-distributed-ubiquitous-environments/72252
http://www.irma-international.org/chapter/load-balancing-peer-peer-systems/36408

