
1122 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Generic Query Toolkit: A Query Interface
Generator Integrating Data Mining

Lichun Zhu, University of Windsor, Windsor, Ontario, Canada N9B 3P4; E-mail: zhu19@uwindsor.ca

C. I. Ezeife, University of Windsor, Windsor, Ontario, Canada N9B 3P4; E-mail: cezeife@uwindsor.ca

R. D. Kent, University of Windsor, Windsor, Ontario, Canada N9B 3P4; E-mail: rkent@uwindsor.ca

ABSTRACT
Construction of flexible query interfaces constitutes an important part in the design
of information systems. Either developers or end-users of information systems can
build new queries. This paper presents progress towards a Generic Query Toolkit
(GQT) that automates the query interface generation process. GQT consists of
a parser and an interpreter for a newly defined Generic Query Script Language,
a background query processing unit, a presentation layer service provider and
the presentation layer component. Data mining querying features have been
integrated into this query language.

Keywords: Business Intelligence, Query Automation, Data Mining

1. INTRODUCTION
The original idea for developing a Generic Query Toolkit (GQT) arose from
projects for building data mart and report systems for business clients. In these
projects, user requirements (business logic) are constantly changing. There is
need to build prototypes quickly to speed up the communication cycle between
developer and end users. To meet this requirement we developed a software
solution to automate the query interface generation process and, thereby, make
the prototyping process more efficient. In this solution, we defined an SQL-like
query language called Generic Query Language (GQL). A language parser parses
the GQL script and extracts elements for constructing a query interface, such as
criteria input fields, display attributes and so on. These elements can be serialized
into XML schema and stored in the database. GQT generates the query interface
based on this schema and then binds end user inputs to generate sequences of
target GQL statements that are processed by an interpreter in order to generate
final query results. Lastly, a set of presentation tools renders results to the end
user interactively.

The current version of GQL script supports not just SQL statements. We have
added flow control, variable declaration and other statements to create a functional
script language, and a set of language features to support XML based dataset
manipulation and data mining functionalities (Han & Kamber, 2001).

The proposed GQT provides solutions for building queries for end-users quickly.
Compared with other commercial solutions, our method is fairly lightweight and
it can be widely integrated with software projects of various scales. Indeed, this
toolkit has been integrated already with information systems ranging from small,
personal desktop Management Information Systems to commercial distributed
large data marketing and data warehouse systems, and from fat-client applications
to web-based applications.

The rest of the paper is organized as follows. Section 2 summarizes relevant related
work. Section 3 presents the design of GQT and GQL, its development and testing
environment. Section 4 discusses the integration of data mining querying and
algorithms into this toolkit. Section 5 presents conclusions and future work.

2. RELATED WORK
The ultimate goal of GQT is to provide more effective interface solutions to support
Business Intelligence (BI). BI software typically includes data warehousing,
data mining, analysis, reporting and planning capabilities (Golfarelli, Rizzi &
Cella, 2004). Existing commercial BI solutions include BusinessObjects (Busi-

ness Objects, 2006), Cognos (Cognos, 2006), and Oracle Business Intelligence
Suite (Oracle Business Intelligence, 2006). Most current commercial BI tools
are rather complicated heavyweight and expensive systems requiring significant
time to learn for development and configuration purposes.

Some open source projects related to our work include: the Pentaho Business
Intelligence Project (Dixon, 2005), Mondrian OLAP server (OLAP Server, 2006),
JPivot project (JPivot Project, 2006), and the Weka Data Mining project (Witten
& Frank, 2005).

3. THE DESIGN OF GENERIC QUERY TOOLKIT
3.1 Introduction of the GQL Script
This paper proposes GQL script language for customizing user querying processes
to a backend database system. The GQL script language can be used to specify
two broad tasks of:

1. User interface definition: Users can describe the data presentation patterns as
Field Attribute and define the query criteria as Condition Attribute with this
script.

2. Process or Service specification: Users can control business workflow and
invoke various services (e.g., data mining services like Classification, As-
sociation Rule using WEKA or other mining algorithms and SQL statements)
using this script.

The syntax to define data presentation pattern or display attribute list (Field At-
tribute) is a collection of semi-colon delimited fields enclosed in curly brackets
“{}” as :

Field Attribute ::= {Field Name;

 Field Description;

 Field Type;

 Display Attribute [;

 [Aggregate Attribute];

 [Key Attribute]] }

where “[]” means optional attributes. Field Name is unique name of column to
be displayed, Field Description is the display label of the column, Field Type is
the SQL data type of the column, Display Attribute specifies the default display
attribute of the column, which can be SHOW/HIDE, The optional Aggregate
Attribute specifies the aggregation method like COUNT, MAX, MIN, SUM
and AVG and Key Attribute indicates whether the column is used for grouping.
For example, we can use “{catalog; Category; STRING; SHOW; ; GROUP}” to
specify the display attributes for column catalog. The display label is Category.
The data type is String. The column can be selected to appear in the SQL-GROUP
clause.

To define the query criteria (Condition Attribute), we use a collection of semi-
colon delimited fields enclosed in angular brackets “<>” as:

Managing Worldwide Operations & Communications with Information Technology 1123

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Condition Attribute ::= <Condition Expression;

 Condition Description;

 Condition Type [;

 [Value Domain];

 [Required Attribute];

 [Default Attribute];

 [Hint]] >

Condition Expression is unique name for query criteria, Condition Description
specifies the display label of the criteria. We can specify “#sequence number” in
this field to tell the parser that the current criteria share the same input value with
the query criteria as the sequence number. Condition Type is the SQL data type of
the column. Value Domain is specified as comma-delimited “value|description”
pairs or “#select value, description from tablename where-clause” to generate
a pick list for input field.

The query process written in GQL script contains a collection of semi-colon
delimited GQL statements. Currently, the language consists of (a) eleven types
of statements (SQL statement, Declare, Assignment, If-elif-else, While, Exit,
Break, Continue, Call, Display and Mine statement), (b) two built-in functions
(today, substring) and (c) one built-in object (DataSet). The detailed language
specification can be found from the online user guide [http://kent1.galab.uwind-
sor.ca:8088/gqlview/pages/GQTUserGuide.html].

For example, to construct a GQL script for displaying the tuples of a database
table called t_dace, would entail replacing columns in the regular select-list with
Field Attribute placeholders, replacing criteria elements in the where-list with
Condition Attribute placeholders to get the following:

select

{id;Item;INTEGER;SHOW;;GROUP},

{mark;Type;STRING;SHOW;;GROUP},

{catalog;Category;STRING;SHOW;;GROUP},

{cdate;Date;DATE;SHOW;;GROUP},

{sum(income) incom;Credit;MONEY;SHOW;SUM},

{sum(outcome) outcom;Debit;MONEY;SHOW;SUM},

{sum((income-outcome)) net;Net;MONEY;SHOW;SUM}

from t_dace

where

<id;Item;INTEGER;#select id,name from t item

 where id between 500 and 999 order by id> and

<note;Description;STRING> and

<mark;Type;STRING;#1> and

<catalog;Category;STRING;#3> and

<cdate;Date;DATE> and

<income*exrate;Credit;MONEY> and

<outcome*exrate;Debit;MONEY>

group by #1, #2, #3, #4

order by #1, #2, #3, #4;

Once the above script is submitted, the GQT system would generate a query
interface shown as Figure 1, a type of input form that allows the user enter ranges
of values for query input criteria of the SQL where clause.

After one inputs the query criteria (including conditions and summary groups,
also shown in Figure 1) and submits the query, the parser generates the following
target statement.

select mark, catalog, sum(income) incom, sum(outcome) outcom,

sum((income-outcome)) net

from t_dace

where id between 501 and 512 and

mark = ‘P’ and cdate >= ‘01-01-2006’

group by mark, catalog

order by mark, catalog

Please note that those input criteria whose values are empty from the interface
form the user filled out, will be removed from the where clause of the final GQL
statement. This target query is evaluated to retrieve query results that are presented
to the user through CheckResult form.

3.2 Architecture of the GQL Toolkit
The java-based architecture has five major components: Metadata repository,
GQL Parser, GQL Daemon, GQL Server and GQL Viewer.

1. Meta data repository: Consists of Query Repository table for all pre-defined
queries and the Task Queue Repository for submitted query tasks history.

2. GQL Parser: is a two-phase parser engine developed using java based lexical
analyzer generator Jflex and java based LALR parser generator Java Cup (Java
LARL Parser, 2006). The first-phase parse happens at the time that user gener-
ates a new query task. The second-phase parse happens at the time that GQL
Daemon executes the submitted task in the background. It performs macro
replacement to generate and interpret target GQL statements in sequential
order, submits SQL statements to database server .

3. GQL Daemon: acts as the background query-processing unit. It awakes every
few seconds to browse the task queue, looking for tasks in waiting status. When
a waiting task is detected, the daemon program creates a thread to execute the
task. It also performs the house-cleaning task, e.g., removes outdated query
instances.

4. GQL Server: The GQL Server module provides service interfaces used by
the presentation layer. Therefore, it can be called directly or via web service
connection. Two major services currently provided are Access Service (for
system related services such as user authentication) and GQL Service (for
providing GQL related services like GQL script parsing, extracting query
directory, query submission, query result extraction and query annotation).

5. GQL Viewer and Client Application: The GQL Viewer and Client Applica-
tion represent the presentation layer of GQT system. There are seven major
functions provided by the viewer: user authentication interface, presenting
query directory to the user, generating query input form after user selects a
query, binding user input into GQL XML schema and calling GQL Server to
submit new queries, monitoring the task queue, annotation or task removal,
displaying the query result to the screen, and finally reporting, data export
and other interactive data analysis support.

Figure 1. Generated query interface

1124 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

3.3 The GQT Querying Process
One main advantage of the GQL script is that it gives us the flexibility to use
one generic set of pre-defined scripts to meet user’s multiple requirements through
the GQT query interface. The two types of users are: administrators who define
and edit GQL scripts and edit existing queries; end users who may know nothing
about SQL or GQL and simply use the interface to query the data. To use the
system, administrators type in the GQL script and save it in the Query Repository
table of the metadata database (in a column with TEXT data type) in advance if
it is a new query. After they setup the new query in the database, if users log into
GQT testbed system, they see the new query item in the left side menu of Figure
1. After they select the query item, the detailed information about the query is
shown in the "View" form, including query name, description and GQL script.
Clicking "Next" button switches the page to the "Input" form. The input query
items or summary group list inside the Input form are dynamically generated
based on the definition of GQL script.

The complete process for GQT querying processing is shown as Figure 2. The
querying sequence contains four major steps.

1. Query Interface Generation:
• User selects a query from menu that is generated from the Query Reposi-

tory.
• GQL Server extracts GQL script using GQL Parser Engine to generate

the Query Schema, which contains input form elements (XML format).
• The Input Form module generates input form webpage from the query

schema.
2. Query Submission:

• User inputs criteria from the Input Form, then clicks “Submit” to submit
the query.

• The GQL Viewer analyzes user’s input and embeds the input value into
the Query Schema, and then sends a CheckCachedQuery request to find
matches in history queries.

• If matches are found and user accepts cached result , GQL Server extracts
cached result from Result Cache and returns it to Result Presentation
module to display the query result. Otherwise, if matches are not found
or user selects to ignore cached result, GQL Server creates a new query
task in Task Queue using its ApplyQuery operator. User’s requests are
redirected to the Monitor & Annotation web module.

3. Background query processing:
• GQL Daemon wakes up every five seconds (configurable) to check whether

there are newly submitted tasks. If it finds new tasks, it spawns a thread

to process the new query task. The status of the task will be turned to
“Running”.

• The GQL Daemon thread sets the status of the task to “Success” or “Er-
ror”.

4. Monitor and result presentation:
• User refreshes the webpage to check the status of their submitted task.
• If the status of the task turns to “Success”, user can click “View” to view

the query result, click “Delete” to remove the query instance, or submit
“Change Notes” to append annotation to an existing query instance.

3.4 The Development and Testing Environment
We have set up a GQT development and test bed environment on a PC environ-
ment (CPU: Pentium III, Memory: 256MB, OS: Fedora Core 4) that can be
accessed via http://kent1.galab.uwindsor.ca:8088/gqlview. One can use the test
user: zlc, password: 9999 to access this system. Because the whole application
is developed using java, it can be deployed to various platforms. Currently, the
backend database is Informix Dynamic Server 10.

4. INTEGRATING DATA MINING FEATURES INTO GQT
The GQT prototype in an embedded mining approach, integrates data classifier by
applying classifier from WEKA data mining toolkit (Weka, 2006), which provides
mining algorithms like Classifiers, Clusterers and Association rule miners.

The following example describes how to use WEKA classifier to first analyze the
data in the GQT system. Then, the WEKA generated classifier model is exported
as a serialized java object, which contains all the details of the algorithm and
parameters. In the second stage, the generated model (*.model) file and training
data (*.arff) are copied into the template directory of the GQT system. Then,
in a GQL script, Mine statement is used to classify the data using pre-generated
mining model file for classifying unlabeled data.

This example data is extracted from a cardholder’s database that contains
cardholder’s demographic information and summarized purchase amounts. The
original cardholder table contains 7 columns as (CID, SEX, AGE, MONTHIN,
PURCHASE, BAD, VIP). Here, SEX, AGE, MONTHIN, PURCHASE and BAD
are the predictor attributes while VIP is class attribute. First, we collect training
records with VIP column already specified. Next, we load the training data into
WEKA explorer, and analyze the data by comparing different classifier algorithms
and different sets of parameters. At last, we export the analyzed result as a model
file saved in the template directory on server, configurable as a system parameter.
In this application, we select the J48 algorithm, an enhanced decision tree clas-
sifier that supports both nominal and numeric predictors and the exported model
file is “j48.model”.

Here, the given Query Goal is: Apply J48 classifier to all cardholders having age
between 30 and 35 to classify based on their VIP. Next, we use the generated J48.
model file to classify the data. The generic mining GQL script for this query is
given below, all the non-SQL statements are marked with a prefix “$”:

1. $declare ads Dataset;
2. select cid, sex, age, month in, purchase, vie, bad from cardholder where
 <cid;ClientId;integer> and
 <vip;VIP;integer;0|False,1|True> and
 <purchase;PurchaseAmt;Money>and
 <age;Age;Integer>
 into temp t1;
3. $set ads = Dataset.readtable(‘t1’);
4. $mine ads classifier using sex, age, month in, purchase, bad class vip_j48

model ‘j48.model’;
5. drop table t1;
6. $display ads using
 {cid;ClientId;Integer;SHOW},
 {sex;Gender;String;SHOW},
 {age;Age;Integer;SHOW},
 {monthin;MonthlyIncome;String;SHOW},
 {purchase;PurchaseAmt;Money;SHOW;SUM},
 {vip;VIP;integer;SHOW},
 {bad;Bad;integer;SHOW},
 {vip_j48;VIP_J48;String;SHOW};

Figure 2. GQT querying process

Managing Worldwide Operations & Communications with Information Technology 1125

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

After submitting and processing the query, the result is shown in Figure 3. The
client with id 38 has a value of TRUE for VIP and FALSE for Bad. The computer
generated classification results are shown as column “VIP_J48”. The above script
uses SQL statement in No.2. to extract the required data from database, then uses
Dataset.readtable statement to load the intermediate data into the Dataset object,
then uses Mine statement to classify the intermediate data using specified model
j48.model (the result of classification algorithm will be stored in vip_j48 column
as specified), at last displays the calculated data stored in the dataset to the user.

5. CONCLUSIONS
We present the Generic Query Toolkit as an economical solution for building
reporting and data analysis focused applications. Data mining features have been
integrated into GQT. We introduced the Generic Query Language to automate the
query and display of results. We can integrate easily the user-defined business
logic, together with back-end services and front-end presentation modules, to
extend the system flexibility.

Future work will include providing OLAP features where user is able to display
the data set as a cube, perform slice, drill down, roll up actions interactively is a
future addition to the system. Further, we plan to support more data mining features
at the query language level, including data clusterer statements and association
rule mining statements. Other algorithms, such as those provided by WEKA, or
self-designed algorithms like PLWAP tree (Ezeife & Lu, 2005), will be included
in the system scope. Another important task is to expand the GQL Server web
service, and integrate OGSA-DAI (OGSA-DAI, 2006) data service to support
accessing distributed data sources.

REFERENCES
Business Objects Website. 2006. http://www.businessobjects.com.
Cognos Website. 2006. http://www.cognos.com.
Dixon, James. 2005. Pentaho Open Source Business Intelligence Platform Technical

White Paper. http://sourceforge.net/project/showfiles.php?groupid=140317.
Ezeife, C.I. and Lu, Yi. 2005. Mining Web Log Sequential Patterns with Position

Coded Pre-Order Linked WAP-Tree. The International Journal of Data Mining
and Knowledge Discovery, Kluwer Academic Publishers, Vol.10, pp.5-38.

Golfarelli, M., Rizzi, S., and Cella, I. 2004. Beyond Data Warehousing: What’s
next in business intelligence. Proceedings of the 7th International Workshop
on Data Warehousing and OLAP Washington DC.

Han, Jiawein and Kamber, Micheline. 2001. Data Mining Concepts and Tech-
niques. Morgan Kaufmann.

Java Cup LALR Parser Generator. 2006. http://www2.cs.tum.edu/projects/
cup/.

JPivot Project. 2006. http://jpivot.sourceforge.net/.
Mondrain OLAP Server. 2006. http://mondrian.sourceforge.net/.
Oracle Business Intelligence Suite. 2006. http://www.oracle.com/appserver/busi-

ness-intelligence/index.html.
The OGSA-DAI Project. 2006. http://www.ogsadai.org.uk/.
W3C Simple Object Access Protocol (SOAP). 2006. http://www.w3.org/TR/

soap.
WEKA Data Mining Project. 2006. http://www.cs.waikato.ac.nz/ml/WEKA/.
Witten, Ian H., and Frank, Eibe. 2005. Data Mining: Practical machine learning

tools and techniques, 2nd Edition. Morgan Kaufmann, San Francisco.

Figure 3. Query result for test classifier

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/generic-query-toolkit/33270

Related Content

A Machine Translation System from Indian Sign Language to English Text
Kinjal Mistree, Devendra Thakorand Brijesh Bhatt (2022). International Journal of Information Technologies

and Systems Approach (pp. 1-23).

www.irma-international.org/article/a-machine-translation-system-from-indian-sign-language-to-english-text/313419

Actor Network Theory and IS Research
Amany Elbanna (2009). Handbook of Research on Contemporary Theoretical Models in Information Systems

(pp. 403-419).

www.irma-international.org/chapter/actor-network-theory-research/35843

Suspicions of Cheating in an Online Class
Julia Davis (2013). Cases on Emerging Information Technology Research and Applications (pp. 363-372).

www.irma-international.org/chapter/suspicions-cheating-online-class/75869

An Arabic Dialects Dictionary Using Word Embeddings
Azroumahli Chaimae, Yacine El Younoussi, Otman Moussaouiand Youssra Zahidi (2019). International Journal

of Rough Sets and Data Analysis (pp. 18-31).

www.irma-international.org/article/an-arabic-dialects-dictionary-using-word-embeddings/251899

Research on Big Data-Driven Urban Traffic Flow Prediction Based on Deep Learning
Xiaoan Qin (2023). International Journal of Information Technologies and Systems Approach (pp. 1-20).

www.irma-international.org/article/research-on-big-data-driven-urban-traffic-flow-prediction-based-on-deep-learning/323455

http://www.igi-global.com/proceeding-paper/generic-query-toolkit/33270
http://www.igi-global.com/proceeding-paper/generic-query-toolkit/33270
http://www.irma-international.org/article/a-machine-translation-system-from-indian-sign-language-to-english-text/313419
http://www.irma-international.org/chapter/actor-network-theory-research/35843
http://www.irma-international.org/chapter/suspicions-cheating-online-class/75869
http://www.irma-international.org/article/an-arabic-dialects-dictionary-using-word-embeddings/251899
http://www.irma-international.org/article/research-on-big-data-driven-urban-traffic-flow-prediction-based-on-deep-learning/323455

