Multimedia and Virtual Reality Technologies in Architecture Education

Nicoletta Sala, Università della Svizzera italiana, Mendrisio, Canton Ticino 6850, Switzerland; E-mail: nsala@arch.unisi.ch

ABSTRACT

The evolution of multimedia and Virtual Reality (VR) technologies can open new educational opportunities in architecture education. This paper describes an example in this educational field.

Keywords: Hypertext, Multimedia, Hypermedia, Virtual Reality, Education, Architecture.

1. INTRODUCTION

Multimedia is the use of several different media (e.g. text, graphics, animation, audio, video, two or more sensory inputs) to convey information. With increases in performance and decreases in price of the hardware, multimedia is now commonplace. Therefore, this technology could offer new opportunities in educational environment, for example integrating different media in the teaching path.

Virtual Reality (VR) is another technology which could have great potential in the school of the next future. It is an environment that is simulated by a computer. The origin of the term “virtual reality” is uncertain though. It has been credited to The Judas Mandala, a 1982 novel by Damien Broderick where the context of use is somewhat different from that defined now. As a medium, VR has three defining characteristics [1]. It is interactive (users can interact with models), spatial (models are represented in three spatial dimensions), and real-time (feedback from actions is given without noticeable pause). VR can be classified according to its methods of display; we have immersive VR (which involves a high degree of interactivity and high cost peripheral devices, for example the head mounted displays), and non-immersive VR in the form of a window into a virtual world displayed on a computer’s monitor [2]. A virtual reality system has the following three primary requirements [3]: immersion (which permits to the user the physical involvement, capturing exclusive visual attention and responding to three-dimensional input. For example, through a head-tracker, 3D mouse, data glove, or fully instrumented body suit); interaction (through the three-dimensional control device to “navigate” in the virtual environment); and visual realism (which is a representation of the virtual world using computer graphics techniques). This paper describes an application of multimedia and virtual reality in a faculty of architecture, where these technologies are used in the teaching paths in different courses.

2. MULTIMEDIA AND VIRTUAL REALITY IN ARCHITECTURE EDUCATION

Multimedia are modifying the ways in which we share information. In particular, it is affecting methods of teaching and learning [4, 5]. We analysed the teaching impact of multimedia technologies in a faculty of architecture, in particular in two courses: one of mathematics and the other dedicated to the computer science. The investigations followed the question: “How to organize some academic courses using multimedia solutions and virtual objects integrated in the teaching path?” To answer it, two courses, specifically conceived for the Faculty of Architecture at University of Lugano (Mendrisio, Switzerland), have been organized starting from 2000 [6]. In these courses, the traditional lectures were integrated by the use multimedia as a teaching strategy. First course, named “Mathematical thought”, was inserted in the first year of the studies until 2004 (5 credits ECTS, European Credit Transfer and Accumulation System). It introduced basic facets of mathematical thought connected to the arts and to the architecture (e.g., the symmetry, the proportions, the golden ratio, the curves and the surfaces, the fractal geometry and the complexity in the study of the urban grown). The second course, named “New media for the architecture” (third year, 5 credits ECTS), is actually in the curriculum of the faculty. This course proposes how new media and the graphics solutions can create new architectural shapes, for example hypersurfaces, and a new kind of architecture (for example, cyberarchitecture transarchitecture, and hyperarchitecture).

The traditional lectures were integrated by the use multimedia, because 60% of students today are visual learners [7, 8]. This category of learners may benefit most from multimedia presentations, which combine words with pictures and audio can help to redefine the teaching methods [4, 7, 9].

The lectures were organized using hypertexts and multimedia presentations, didactic CD-ROM, animations in Java language, scientific documentaries, data streaming, dedicated to the information and communication technologies. Figure 1 shows the home page of Nova Web TV (http://www.nova-multimedia.it/webtv/) that is a section of the portal Nova Multimedia (http://www.nova-multimedia.it), which collects interviews, “media book”, and scientific data streaming dedicated to the connections between arts, new media and computer science. “Media Book”, available on line in pdf format, collects the theoretic contributes of famous contemporary scientists coming from the international academic and scientific panorama. We used some interesting “media book” and the interviews, present in the section Nova Web TV, integrating their in the teaching path. The lecture hall was provided with the technological structures which was allowing to use different media in the lessons. Their contents were integrated in the teaching path.

Other technological tool integrated in the teaching path was the Virtual Reality (VR). In recent years, VR has emerged as a revolutionary human/computer interface, challenging everything to which individuals are accustomed. Research institutes around the world have demonstrated the potential of VR systems as a visualization tool and, as technology continues to improve, it is proposed that VR systems will become increasingly pervasive as tools for education [10, 11]. Thus, inside our educational environment, the virtual reality have been used in two ways. One is to insert this technology in the process of teaching. For example, to

Figure 1. Home page of Nova Web TV (http://www.nova-multimedia.it/webtv/)
explain the 3D surfaces some 3D virtual objects have been created, using VRML (Virtual Reality Modelling Language). The virtual objects can be observed in the theoretical lessons and it is possible interact with them during the laboratory activities [6]. The students manipulated the polyhedrons, observing them from different points of view. They also analysed the connection between virtual polyhedrons, the nature and the architecture (for instance, looking for an analogy between the polyhedron forms, the forms of Radiolaria, a kind of protozoa, and the geodesic domes). They studied the crystals’ shapes and their symmetry, with virtual crystal created using VRML, and they came in virtual buildings to observe their geometrical components and their analogy with natural shapes.

Second way is to integrate virtual reality in the design process, for example to realize virtual models of buildings. It has been developed in the laboratory activities of the course of “New media for the architecture”, where the students use the virtual reality technology, and they present their architectural projects using hypermedia presentations and “virtual tours” inside them. This educational approach is begun in 2001 and it continues every day today. During these five years, the students evaluated the teaching process through multiple choices tests. During the exams, we evaluated the quality of the teaching method analysing the students’ school profit. Important deductive considerations are shown.

In brief:
1. multimedia assists the teaching process (in fact, different communication codes in a lecture make more incisive the explanation);
2. the lectures are now more interactive (for example, in the laboratory activities the students can create virtual objects and they can navigate in didactic hypermedia); and
3. the students got good grades in the exams.

Some of the possible benefits of VR on the design process and practice of architecture could be:
- the ability to test ideas in “real time” in a “three-dimensional” space during the design process;
- communication of ideas, and the power to illustrate the projects;
- the elimination of much of the guesswork in design;
- braver and better designs; and
- the integration of the design process.

These deductive considerations are in agreement with recent studies which have recognized that virtual reality offers benefits, and it can support the education and the design project [1,10,11,12,13,14,15]. In particular, in the faculties of architecture where the design is affected by the medium used [1,16]. Henderson (1999) notes that: “Young designers trained on graphics software are developing a new visual culture tied to computer-graphics practise, that will influence the way they see and will be different from the visual culture of the paper world” [17, p. 57]. Architects who have grown up with digital media and virtual reality will be expert users of interactive, spatial, real-time environments [1, 18]. These designers will solve problems using representations that do not emulate paper-based media.

3. CONCLUSIONS AND FUTURE TRENDS

Educators and researchers look for more efficient ways of teaching and learning. Furthermore, it is proposed that different media assists in the teaching processes.

Kozma (1991) argues that media which promotes cognitively relevant characteristics such as symbol systems and processing capabilities, enables students to process information more effectively and understand it more fully [4]. Bagui (1998) has recognized that virtual reality technology, and they present their architectural projects using hypermedia presentations and “virtual tours” inside them. This educational approach is begun in 2001 and it continues every day today. During these five years, the students evaluated the teaching process through multiple choices tests. During the exams, we evaluated the quality of the teaching method analysing the students’ school profit. Important deductive considerations are shown.

In brief:
1. multimedia assists the teaching process (in fact, different communication codes in a lecture make more incisive the explanation);
2. the lectures are now more interactive (for example, in the laboratory activities the students can create virtual objects and they can navigate in didactic hypermedia); and
3. the students got good grades in the exams.

Some of the possible benefits of VR on the design process and practice of architecture could be:
- the ability to test ideas in “real time” in a “three-dimensional” space during the design process;
- communication of ideas, and the power to illustrate the projects;
- the elimination of much of the guesswork in design;
- braver and better designs; and
- the integration of the design process.

These deductive considerations are in agreement with recent studies which have recognized that virtual reality offers benefits, and it can support the education and the design project [1,10,11,12,13,14,15]. In particular, in the faculties of architecture where the design is affected by the medium used [1,16]. Henderson (1999) notes that: “Young designers trained on graphics software are developing a new visual culture tied to computer-graphics practise, that will influence the way they see and will be different from the visual culture of the paper world” [17, p. 57]. Architects who have grown up with digital media and virtual reality will be expert users of interactive, spatial, real-time environments [1, 18]. These designers will solve problems using representations that do not emulate paper-based media.

4. REFERENCES

cognitive skills performance, ICCE’99 (7th International Conference on
Computer in Education) Advanced Research in Computers and Communica-
tions in Education: New Human Abilities for the Networked Society, vol. 1,
Chiba, Japan, G. Cunming, T. Okamoto & L. Gomez (Eds.), 4-7 November
Web. Proceedings World Conference on World Conference on Educational
Multimedia, Hypermedia & Educational Telecommunications ED-MEDIA
1 – 11.
11. Younghblut, C., Educational Uses of Virtual Reality Technology. Institute for
edu/scivw/youngblut-edvr/D2128.pdf
12. Ainge, D, Introducing Primary Students to VR with Do 3D, VR in the Schools
edu/vr/vrits/4-3Ainge.htm
13. Mantovani, F., VR learning: potential and challenges for the use of 3D envi-
ronments in education and training, G. Riva (eds.), Towards CyberPsychology:
mind, cognition and society in the Internet age (vol. 2), Amsterdam: IOS
14. Gerval, J.P., Popovici, M., Ramdani, M., El Kalai, O., Boskoff, V., and Tisseau,
J., Virtual Environments for Children, Proceedings International Conference
on Computers and Advanced Technology Education (CATE), Cancun, Mexico
15. Shin, Y.S., Virtual Experiment Environment’s Design for Science Education,
International Journal of Distance Education Technologies, Vol. 2, N. 2, 2004,
pp. 62-76.
Technology Literacy Applications in Learning Environments, Idea Group
and computer graphics in design engineering, MIT Press, 1999.
18. Prestinenza Puglisi, L., HyperArchitecture Spaces in the Electronic Age,
tional Multimedia and Hypermedia, 7(1), 1998, pp. 3 – 18.
20. Maye, R.E., Multimedia learning: Are we asking the right questions? Educa-
571 – 585.
22. Linn, C., and Davidson-Shivers, G., Effects of linking structure and cognitive
style on students’ performance and attitude in a computer-based hypertext
– 329.
23. Sala, N., Teaching Mathematics Using New Media. Proceedings CIEAEM53:
Mathematical Literacy in the Digital Era, Ghisetti e Corvi Editori, Verbania,
24. Sala, N., Multimedia and Virtual Reality in Architecture and Engineering
Education, Proceedings of the 2nd WSEAS/IASME International Conference
18-23
26. Sala, N. “Le nuove tecnologie nella didattica e nella formazione/aggiornamento
dei docenti di matematica”, Matematica e scuola: facciamo il punto, Ghisetti
and Corvi Editori, Milano, Italy, 200, pp. 55- 60, (Italian version).
Related Content

I-Rough Topological Spaces
www.irma-international.org/article/i-rough-topological-spaces/144708/

Using Semantics in the Environment for Multiagent-Based Simulation

Challenges to Qualitative Researchers in Information Systems
www.irma-international.org/chapter/challenges-qualitative-researchers-information-systems/28266/

Securing Stored Biometric Template Using Cryptographic Algorithm
www.irma-international.org/article/securing-stored-biometric-template-using-cryptographic-algorithm/214968/

Flipping the Medical School Classroom
www.irma-international.org/chapter/flipping-the-medical-school-classroom/184281/