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AbStRAct
Perceptron learning is proposed in the context of so-called scoring systems used 
for assessing creditworthiness as stipulated in the Basel II central banks capital 
accord of the G10-states. The approximate solution of a related ranking problem 
using a large margin algorithm is described. Some experimental results obtained 
by utilizing a Java prototype are exhibited. From these it becomes apparent that 
combining the large margin algorithm presented here with the pocket algorithm 
provides an attractive alternative to the use of support vector machines. Related 
algorithms are briefly discussed.

1. IntRoductIon
At least since the Basel II central banks capital accord of the G10-states, cf. e.g. 
[1], the individual objective rating of the creditworthiness of customers has be-
come an important problem. To this end so-called scoring systems, cf. e.g. [12], 
[23], [17], [6] have been used for quite some time. Generally these systems are 
simple classifiers that are implemented as (linear) discriminants where customer 
characteristics such as income, property assets, liabilities and the likes are assigned 
points or grades and then a weighted average is computed, where a customer is 
judged “good” or “bad” according to whether the average exceeds a cut-off point 
or not. In an extreme case the attributes are just binary ones where 0 respectively 
1 signifies that the property does not hold respectively holds. This situation fre-
quently arises in practice. The weights can then either be computed using classical 
statistical methods or more recently employing artificial neural networks, cf. e.g. 
[19], provided that suitable bank records are available for training. 

However, the use of only two classes for the classification of customers presents 
certain problems. The event of a credit default for example is not precisely defined, 
cf. [1], p. 92, so that banking records would almost certainly need at least one 
more class (e.g. “doubtful (?) customers”). This indicates that a finer distinction 
among customers could be useful. Indeed, after a computation of default prob-
abilities (again usually based on two classes) banks divide customers into a larger  
number of classes. This, of course, seems rather counter-intuitive, since surely 
the division should (and could) be based on experience and be effected before 
probabilities are computed. Hence in this paper it is assumed that training data 
are available, where banking customers are divided into mutually disjoint risk 
classes C1, C2, …, Ck. Here class Ci is preferred to Cj if i<j. It was shown in [8] 
how this preference relation may be learned employing a generalized version 
of the pocket algorithm to solve the associated ranking problem. Unfortunately 
this is not a large margin algorithm, cf. e.g. [11], and hence in this paper a large 
margin perceptron ranking algorithm based on the work of Krauth and Mezard, 
cf. [14], will be presented.

Note that the use of several classes has been investigated beforehand, see e.g. 
[2], p. 237. Moreover, the use of ranking functions has been recognized in an 
information retrieval context, cf, e.g. [25], for solving certain financial problems, 
cf. [15], and for collaborative filtering, cf. [20], [21]. However, at least in the 
banking business, ranking functions, as described in section 2 below, see also 
[7], [22], apparently have not  been used before for the rating of customers. Note 
also that the fixed margin ranking algorithm described in [20] and [21] involves 

solving a quadratic and a linear programming problem successively whilst the 
algorithm presented below is obtained from a reduction of the ranking problem 
that allows a surprisingly simple albeit approximate solution using a modified 
perceptron learning algorithm.   

2. ReductIon of the RAnkIng PRobLeM
Suitable anonymous training data from a large German bank were available. In 
abstract terms then t vectors x1, x2, …, xt from ℜn (think of these as having grades 
assigned to individual customer characteristics as their entries) together with their 
risk classification (i.e. their risk class Cs for 1 ≤ s ≤ k, where the risk classes were 
assumed to constitute a partition of pattern space) were given. Hence implicitly a 
preference relation (partial order)  “〉”  in pattern space was determined for these 
vectors by 

xi 〉 xj if  xi ∈ Ci   and   xj ∈ Cj  where i < j. 

It was then required to find a map mw: ℜn →ℜ that preserves this preference 
relation, where the index w of course denotes a weight vector. More precisely 
one must have

xi 〉 xj ⇒ mw (xi) > mw (xj)

If one now specializes by setting mw (x):= <ϕ(x), w>, denoting the scalar product 
by <.,.> and an embedding of x in a generally higher (m-) dimensional feature 
space by ϕ, then the problem reduces to finding a weight vector w and constants 
(“cut-offs”) c1 > c2 > …> ck-1 such that

x ∈ C1  if  <ϕ(x), w> > c1

x ∈ Cs   if  cs-1 ≥ <ϕ(x), w> > cs 

for s = 2, 3, …, k-1

 x ∈ Ck  if  ck-1 ≥ <ϕ(x), w>. 

The problem may then be reduced further to a standard problem:

Let ei denote the i-th unit vector in ℜk-1 considered as row vector and construct a 
matrix b of dimension (m1+2m2+k-2)×(m+k-1), where m1:= |C1∪Ck| (here |S| 
denotes the cardinality of set S) and m2:= | C2∪C3 …∪Ck-1 |, as follows:

 b:= 







d
R

 , dimension R = (k-2) ×(m+k-1), and the i-th row of R is given by 
the row vector (0, …,0, ei -ei+1) with m leading zeros. Moreover d is described 
by:
For every vector x in C1 respectively Ck d contains a row vector (ϕ(x), -e1) 
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respectively (-ϕ(x), ek-1), whilst for every vector x in Cs with 1 < s < k it 
contains the vectors (ϕ(x), -es) and (-ϕ(x), es-1). The reduction of the problem 
to a system of inequalities is then proved by the following lemma.

Lemma 1: A weight vector w and constants c1 > c2 > …> ck-1 solving the ranking 
problem may (if they exist)  be obtained by solving the standard system of 
inequalities bv > 0 where v:= (w, c1, c2, …,ck-1)

T.

Proof (see also [7]): Computation.         
          

Of course, it must be admitted that the existence of a suitable weight vector v is 
by no means guaranteed. However, at least in theory, the map ϕ may be chosen 
such that the capacity of a suitable separating hyperplane is large enough for a 
solution to exist with high probability, cf. [4]. 

The price one has to pay for this increased separating capacity consists on the 
one hand of larger computation times. On the other hand, and perhaps more 
importantly, a loss of generalization capabilities due to a higher VC-dimension 
of the separating hyperplanes, cf. e.g. [24], must be taken into account. Hence it 
seemed advisable to employ fault tolerant perceptron learning using a generalized 
version of the pocket algorithm, cf. e.g. [11], [7]. In order to further improve the 
generalization properties here a large margin perceptron ranking algorithm based 
on the work of Krauth and Mezard will be presented. This may be  be used to 
construct a separating hyperplane that has the large margin property for the vectors 
correctly separated by the pocket algorithm. The reader should compare this to the 
large margin ranking described in [20]: There the problem is solved using a (soft 
margin) support vector machine. Unfortunately computation of the complete set 
of  cut-offs requires the solution of  an additional linear optimization problem. 

3. LARge MARgIn PeRcePtRon RAnkIng
Here the minimal distance of  any vector to the closest cut-off will be maximized. The 
reader should compare this to the fixed margin strategy in the sense of [20].

3.1 Pseudo code for Perceptron Ranking
First note that the reduction of the ranking problem in section 2 immediately leads 
to an elegant  perceptron ranking algorithm (where separability is assumed).

The pseudo code for this algorithm reads as follows.

Perceptron Ranking Algorithm
Input:  Binary vectors x1, x2, ..., xt  (or vectors with integer entries)  from Ζn with 

corresponding classifications b1, b2, ..., bt  from {1, 2, …, k} (where the classes 
C1, C2, …, Ck for simplicity have been denoted by their indices) as training 
vectors, and a function ϕ: Ζn  → Ζm, where in general m>n.

output: A weight vector w  and k-1 cut-offs ci satisfying c1 > c2 > … > ck-1 as 
vector c that solve the ranking problem. 

Initialize w, c arbitrarily.
Cycle through the t+k-2 vectors e1-e2, e2-e3, ... ek-2-ek-1, ϕ(x1), ϕ(x2), ..., ϕ(xt) and 

do until no further erroneous classifications occur
If  < ep-ep+1, c> ≤ 0  then
  cp:= cp +1;
  cp+1:= cp+1 -1;
 End If
 If xp ∈Cs& <ϕ(xp), w> ≤ cs & 1≤ s ≤ k-1 then
  w:= w +ϕ(xp);
  cs:= cs-1;
 End If
 If xp ∈ Cs & <ϕ(xp), w> ≥ cs-1 & 2≤ s ≤ k then
  w:= w - ϕ(xp);
  cs-1:= cs-1 +1;
 End If
 Return w, c

Remark: The restriction on the entries of the training vectors, which would be 
rather a nuisance for practical applications, can be removed fairly easily, 
cf. [18].

3.2 correctness Proof  for Perceptron Ranking
This follows immediately from the Perceptron Laerning Theorem, cf. [16] and [3] 
by observing that its application to the ranking problem as presented in section 
2 leads to the update operations given in the pseudo code above. Note here that 
for perceptron learning under the assumed separability the monotonicity of the 
cut-offs is guaranteed already if the inequalities resulting from the block matrix 
d in section 2 are satisfied. Hence here the pseudo code could be shortened ac-
cordingly. However, if application of the pocket algorithm is envisaged, then 
the inequalities resulting from the block matrix R  in section 2 constitute rules 
that must be fulfilled and hence cannot be ignored if a small number of faults is 
considered admissible. The reader may wish to consult [22], for a similar ranking 
algorithm.  It is, however, given using a kernel version and its Novikoff bound 
will be somewhat worse in general as can fairly easily be seen.

3.3 Pseudo code for Large Margin Perceptron Ranking
The work of Krauth and Mezard concerning large margin perceptron learning is 
described in [14]. Certain modifications were necessary in order to combine it 
with 3.1 and obtain a large margin algorithm, cf. [9]

The pseudo code for this algorithm reads as follows.

Input:  Binary vectors x1, x2, ..., xt  (or vectors with integer entries)  from Ζn with 
corresponding classifications b1, b2, ..., bt  from {1, 2, …, k} (where the classes 
C1, C2, …, Ck for simplicity have been denoted by their indices) as training 
vectors, and a function ϕ: Ζn  → Ζm, where in general m>n. In addition a real 
number α > 0 must be chosen. 

output: A weight vector w  and k-1 cut-offs ci satisfying c1 > c2 > … > ck-1 as 
vector c that approximate the maximal margin solution of the ranking problem. 
The approximation improves with increasing α.

Initialize w, c with 0, 0.
Loop
For the given vectors ϕ(x1), ϕ (x2), ..., ϕ(xt) compute the minimumm  of the fol-

lowing expressions:
 (i)  <ϕ(xi), w> - cs  if  1 ≤ s ≤ k-1
  for  xi ∈ Cs , 1 ≤ i ≤ t 
 (ii)    -<ϕ(xi),  w> + cs-1 if  2 ≤ s ≤ k
Then  m  either has the form 
 (a) m = <ϕ(xj), w> - cs  for some j und xj ∈ Cs
 or
 (b) m = -<ϕ(xk),w> + cs-1  for some k und xk∈Cs
If  m > α  then
 display w, c;
 stop;
Else
 If  (a) then
  w:= w + ϕ(xj);
  cs:= cs - 1;
Else
 w:= w - ϕ(xk);
 cs-1:= cs-1 + 1;
End If
End If

So in contrast to the ordinary perceptron ranking in the wide margin perceptron 
ranking the update operation is performed with the “worst” classified element as 
opposed to with an arbitrary misclassified element.

Note that for the case α = 0 the original perceptron ranking as in 3.1 is obtained. 
Note also that a correctness proof of the algorithm follows from the correctness 
proof of the slightly modified Krauth/Mezard algorithm as given in [9] and the 
correctness proof in 3.2.

Perhaps it should also be pointed out that in analogy to ordinary perceptron learning 
kernel versions of both algorithms are readily deducible since in both cases only 
scalar products need to be computed to decide on the update operation.
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3.4 experimental results
In order to test the large margin algorithm and with a view to further extensions 
a Java prototype was constructed. This was connected to an Access database via 
ODBC. In addition an Excel system with the Solver installed was  employed for 
quadratic programming.

The experiments were carried out with 58 data vectors, which allowed perfect 
separation, provided by a German financial institution. The customers had been 
divided into 5 preference classes and the method by which the classes had been 
obtained was not disclosed (originally there were only 4 classes but six likely 
looking candidates were assigned to class 5 thus creating a slightly artificial situ-
ation). Each customer was characterized by 8 attributes where each attribute had 
been assigned a grade (from 1 to 5, where 1 is the best grade) based on evalua-
tions by internal computer programs (again the details of this evaluation are not 
disclosed to outsiders). This led to an obvious reversal in some inequalities of 
the algorithm since the lowest weighted average grade was considered the best. 
The experiments were conducted on a standard laptop (1.47 GHz clock, 512 
MB RAM).  In order to test the quality of  approximation measurements were 
conducted for various values of  α (denoted by alpha in the Excel diagrams). For 
simplicity the function ϕ appearing in the algorithm was taken to be the identity. 
Moreover for comparison purposes the optimal large margin weights and cut-
offs were calculated by solving the following quadratic programming problem 
employing the Excel Solver:

Minimize  ||w||2 subject to

 <xi, w> - cs-1 ≥ 1 for s = 2, 3, 4, 5

 <xi, w> - cs ≤ - 1 for s = 1, 2, 3, 4

where xi ∈ Cs and i = 1, 2, 3, …, 58.

In this programming problem the entries of the vector w and the cut-offs were 
declared as variable to the Excel Solver so as to simultaneously get  an optimal 
weight vector and optimal cut-offs

As a measure of the quality of approximation the distance of the “worst-classi-
fied” element to the nearest cut-off was computed. In diagram 1 the result for the 
optimal solution namely 0.0739745 is marked by a horizontal line. Note that the 
time measurements refer to elapsed time only and hence cannot be entirely ac-

curate since for example cache effects have not been taken into account. However, 
for the puposes of the present paper this somewhat crude form of measurement 
was deemed adequate.

The results obtained were as follows in Diagrams 1 and 2.

As may be seen from diagram 1 the approximation to the optimal solution im-
proves quite fast with increasing  α up to about 80. Thereafter, however, only 
slow progress is made. Nevertheless, for practical purposes this approximation 
may be quite sufficient.

Clearly the time requirements increase linearly with increasing α as can be seen 
from diagram 2 (where times are given in milliseconds) and thus appear quite 
reasonable.

4. cOncLuSIOn AnD OuTLOOK
A new large margin ranking algorithm has been presented. Encouraging experimen-
tal evidence has been obtained using “real life” data from a financial institution. 
The algorithm is based on a reduction of the ranking problem and a combination 
of the resulting ranking algorithm together with a result essentially due to Krauth 
and Mezard. In contrast to the wide margin ranking algorithm described in [20] 
it can be implemented with a surprisingly compact Java encoding. This is due 
to the fact that it can be seen as an extension of classical perceptron learning. 
On the other hand, of course, it gives only an approximate solution which may, 
however, as indicated by the experimental results, be quite satisfactory for practical 
applications. To clarify the situation additional experiments are needed and it is 
envisaged to perform these as soon as suitably large data sets become available. 

In addition the algorithm only works for separable sets. However, it is intended 
to combine it with a modified version of the pocket algorithm by applying it 
to those data sets only that are correctly separated. This way an empirical risk 
minimization would be performed which is then followed by maximizing the 
margin. This seems attractive since that way certain approximations inherent to 
the soft margin support vector machine as utilized in [20] are avoided. Again it 
is intended to conduct suitable experiments as soon as possible.

Finally a few comments on related algorithms seem in order. The large margin 
algorithm in [20] has been briefly discussed already. The ranking algorithms in 
[5] and [13]  appear inferior from the results given in [20]. In [26] large margin 
perceptron learning was introduced for the pocket algorithm. However, in spite 
of reasonable experimental evidence, the theoretical basis appears slightly shaky, 
for details see e.g. [10]. The ranking algorithm in [22] (soft margin version) ap-
pears to contain a gap since the monotonicity condition for the cut-offs seems to 

• • • ••• • •• • •• • • • • • •• • • •• •

•

• •• •

• •• •

• •• •

• •• •

• •• •

• •• •

• •• •

• •• •

• • • • • • • • • • • •

• • • • • •• • • • • •

• •• • •• • • • •• • • • • • •

•

• • • •

• • • •

• • • •

• • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • • • • • • • • •

• • • • • •• • • • • •

Diagram 1
Diagram 2



Managing Worldwide Operations & Communications with Information Technology   915

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

be neglected. Moreover an additional vector is ignored without explaining the 
consequences. In short then the algorithm closest to the one presented here seems 
to appear in [20]. Of course, it has been tested in a completely different context 
and an objective comparison concerning the banking application envisaged here 
is still outstanding. 
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