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AbStrAct
Software development is a complex business, whether maintaining or extending 
existing legacy systems, or whether developing new systems.  Another challenge 
faced by programmers, is determining whether sufficiently rigorous unit- and 
integration-testing is employed to give confidence that a system is behaving as 
intended.  One approach to help address such challenges is to use automated 
program analysis tools and techniques, where the programmer will use a software 
tool to gain an insight into some aspect of the system they’re working on.  One 
particular type of static program analysis technique, call-graph analysis, focuses 
on the calling relationships that exist in a program.  One of the common problems 
with this and other static analysis techniques is that they tend to be source language 
based and are therefore often limited in terms of applicability, especially in multi-
language/module systems.  In this research we investigate call-graph analysis on 
the .Net platform that sidesteps these common limitations and allows analysis of 
programs regardless of source language, and regardless of the number of mod-
ules/assemblies in the program.  We demonstrate the soundness and usefulness of 
the approach by demonstrating the analysis of a multi-module application that is 
written in several different source languages from 2 different vendors.
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1. introdUction
Key challenges faced by programmers today include the difficulty of understanding 
complex codebases while performing maintenance and ensuring that test-suites 
sufficiently cover the code in question.  Software maintenance particularly often 
involves many difficulties, including gaining an understanding of the system being 
modified or analyzing an existing system as a whole.  Understanding a system is 
often complicated by documentation which is either out of date, limited or in some 
cases even non-existent, and analyzing a system is complicated when it spans 
over several languages, implementation modules, and/or process boundaries.  By 
1990, the amount of legacy code being maintained was already estimated at 120 
billion lines of code (Sommerville 2001, p. 623.)  Today, this is estimated to be 
in excess of 250 billion lines of code! (Losch 2005)  With a legacy codebase of 
this size being maintained, the argument for re-engineering systems instead of 
outright replacement becomes quite compelling.

These challenges are typically addressed through suitable program comprehension 
and -coverage analysis tools.  A key data structure used by both these types of 
program analysis tools is the program call-graph.  Call-graph analysis focuses on 
the particular calling relationships that exist in a program, and the results of such 
a tool are very useful in determining the call relationships used to track errors and 
design suitable test data for unit and integration testing.  However, conventional 
program call-graph analysis often relies on program source code parsing techniques, 
which limit it to that particular source language.  Thus, if the system consists of 
multiple modules written in multiple languages then it follows that it would be 
extremely difficult at best to do a full-program analysis, unless you have analysis 
tool(s) that can read all the source languages and can inter-operate when generat-
ing the call graph.  An alternative approach that addresses both these limitations 
is to perform analysis on .NET Common Intermediate Language (CIL) instead 
of the program source language.  In this research we develop a simple software 
framework and a prototype call-graph analysis tool using CIL, thus in principle 
demonstrating the feasibility of this approach in practice.

The contribution of this paper is in the development of the prototype model 
mentioned which provides a usable foundation from which further work may be 
conducted, on the .Net platform and CIL.  Details of the model are given in Sec-
tion 3, followed by a short discussion and outline for future work.

2. brief literAtUre review
While we’ve had program development, there seems to be renewed interest in 
many types of such tools.  This interest is driven by several factors, including 
the increased capacity for analysis on today’s machines, the increasing ability 
for analysis as a result of software platform advances, and the changing focus of 
the industry with respect to software development and maintenance.  Ultimately 
however all of these things can be largely drawn back to the problem of software 
maintenance and software change.  If a system was not that well designed to begin 
with, or if it’s been modified in less than ideal ways and accumulated a substantial 
so called “code debt” (Fowler 2000, pg. 66), gaining an understanding of the 
codebase, clarifying its original design intentions and developing meaningful 
test suites are crucial (for which such tools are very useful.)

Call Graph Analysis
Olin Shivers’ provides a succinct description of the call graph analysis problem: 
“For each call site c in program P, what is the set F(c), that c could be a call 
to?” (Shivers 1988):

Call Graph analysis is the process of generating a program call multi-graph (call-
graph) for a program.  It’s a directed graph where nodes represent procedure, 
function or method names, and edges represent calling relationships (Aiken 2005).  
A program call graph is therefore a control flow representational construct at the 
inter-procedural level (therefore not showing detail inside procedures/methods.)  
A call graph may also be described in textual form by enumerating all the nodes) 
together with the set of edges between them.  Note however that this description 
actually encompasses several possible meanings, for example: 

method mi invokes method mj

call site ck inside mi invokes mj

call site ck inside mi invokes mj on an instance of X   (Rountev, Kagan & Gibas 
2004)

Figure 1 below shows a taxonomic breakdown of program analysis in general, 
serving to place call-graph analysis into the broader program analysis context: 

Call graphs are central to various types of compiler optimizations, including both 
inter-procedural optimization (where the effects of callers and callee’s are sum-
marized into the call graph) as well as intra-procedural optimization (for example 
where the included receiver class sets may allow method invocation to be bound 
statically instead of dynamically).  Call graphs are also central to several other 
types of analysis such as call-chain analysis and call-tree coverage analysis, and 
is also useful in various types of developer tools, such as test tools, debug tools 
and program understanding tools.
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Call graph generation in first order languages such as FORTRAN is very easy:  
It can be performed by firstly generating the nodes by finding all functions in the 
program, followed by insertion of edges for each function call that exists in the 
program.  That is, for each call to function b() in arbitrary method a(), you insert 
an edge (a,b) (Lakhotia 1993, pg. 273).  

In higher order languages things are unfortunately substantially less simple, due 
to the requirement to estimate the receiver classes at call-sites prior to call-graph 
construction.  The problem is more or less as follows:  In order to perform Inter-
procedural data flow analysis (a process whereby you compute summaries of the 
effects of callers and callee’s at function/procedure entry points and call-sites 
respectively, which may be consulted during optimization (Grove 2001, pg. 686)), 
you need to have already constructed a call graph that may be traversed during this 
analysis.  As mentioned, in first-order languages there is no problem as the the target 
function is directly and unambiguously evident from the call site.  However, with 
object-oriented languages with dynamic dispatch mechanisms, the actual target of 
a call site is usually dependent on the data flow(s) to that point in the program (in 
particular, the actual class type of the object variable on which the method call is 
performed), which implies that you need to have already performed some form 
of data flow analysis in order to discover the actual receiver classes for a call site 
(ibid)!  Thus there occurs a seemingly paradoxical situation.  

Typical solutions include performing the two steps in parallel (to be precise to 
interleave them), or to make suitable assumptions (whether optimistic or pes-
simistic) for one of the three entities involved (call-graph, receiver class sets or 
inter-procedural analysis) in order to break the deadlock and then iterating the 

solution to a suitable solution point (ibid).  Dean compares and contrasts several 
techniques for the construction of call-graphs in the presence of “higher-order” 
functions and goes on to evaluate them in terms of three properties, namely: Preci-
sion; Time complexity; Supported Language features (Dean 1997, pg. 2).

Grove & Chambers present a fairly comprehensive evaluation of existing call-
graph construction algorithms in (Grove 2001).  They implement the evaluation 
via a generic parameterized call-graph construction algorithm implemented in the 
context of an optimizing compiler infrastructure.  This approach allows them to 
validly compare different call-graph algorithms on a “level playing field.”

Call Graph Analysis at Intermediate Code Level
While some research has been done with respect to program analysis in general 
and call-graph construction in particular using VM’s and intermediate languages, 
most of this work is Java based.  For example, Lance presents work where the 
unmodified bytecode output by a Java compiler was analyzed to produce “end-
product program analysis information” and utilized a prototype to prove the concept 
(Lance 1999).  Another work by Maggi & Sisto demonstrates the feasibility of 
performing data flow analysis against Java bytecode to infer type information 
(Maggi 2001).  On the other hand, Zhao demonstrates the viability of performing 
intra-procedural dependence analysis using Java bytecodes in their work (Zhao 
2000).  Other work such as that by Arnold (2005) examines the idea of using 
dynamically collected profiling information, collected via the virtual machine 
itself to generate high-accuracy call-graphs.

Figure 1. Taxonomic breakdown of program analysis (Losch 2005)

Figure 2. Analyzer architecture layout
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Finally, Searle presents a tool called “DUCT” (for Define Use Chain Tool) which 
focuses on “relative debugging” and the following of “define-use” chains in pro-
gram code.  DUCT, unlike most other research focusing at the intermediate level 
(and very much like this research) leverages .Net CIL to allow it to operate on 
“a wide variety of languages without modification.” (Searle 2003)  Additionally, 
it should be noted that DUCT uses an incremental approach and mostly avoids 
traditional global program analysis (although like other incremental algorithms 
it also does require an initial full analysis to start with).  DUCT’s implementation 
uses essentially 3 analysis data structures, namely a Control Flow Graph, a Class 
Hierarchy Graph, and a Call Graph.

3. cAll grApH AnAlyzer implementAtion
A layered architecture, typical of many systems and particularly 3-tier business 
systems was used, as initially there was some uncertainty with respect to exactly 
how the .Net files would be interacted with (i.e. it was uncertain which back-end 
library or combination of libraries would be used to read the IL assemblies.)  The 
analysis framework along with all algorithms and logic it contained was therefore 
to be well separated from the mechanics of actually retrieving the information, 
thus making it possible to easily change the data-access aspect without affecting 
the rest of the analyzer too much (hence the similarity to how a tiered business 
app might use an object persistence framework to insulate itself from database 
platform changes.)  The particular architecture was inspired by an example ob-
ject-persistence framework by Philip Brown (2000).  The original architectural 
layout is shown in Figure 2 below.  The idea was to contain the “analysis domain” 
logic in the middle layer, keeping separate all assembly data access concerns in 
data access classes in the right-had layer.  These in turn delegate to one or more 
underlying reflection libraries to get their work done.  Lastly, user interface and 
other application logic are kept in the application layer on the left.

Since most domain classes would have a common need/requirement in terms 
of having to be populated/loaded from the back-end API’s by the data access 
classes, having this functionality common to a base domain class seemed sen-
sible.  Similarly, common data access behavior could be put in a base class for 
all data access classes.

The implementation used C# as primary implementation language, but also used 
all of the other languages available in Visual Studio 2005 (Beta 2) namely C++, 
VB.Net and J#, as well as Borland Delphi, as an alternative vendor’s language.  
Small test libraries or assemblies were constructed in each of these languages, 
some with multiple links, as test cases for the analysis.  For example, there’s a C# 
test application that calls on a J# library, that in turn calls on a C++ library.

Other tools used include the Nunit unit testing framework for .Net as well as 
TestDriven.Net (a plug-in for Visual Studio that make Nunit testing available 
from within the VS IDE.)  Note that Visual Studio 2005 (however, only the high 
end Team Suite edition) now has built-in Unit testing support (which is clearly 
closely modeled on Nunit’s approach).  It also includes other code analysis support 
functions, such as unit-test coverage analysis.  For version control Subversion was 
used, together with the TortoiseSVN plug-in for Windows Explorer.  

4. preliminAry reSUltS
We now demonstrate and evaluates the .Net CIL based analyzer in actual use, 
firstly using an “Animal Taxonomy” example inspired by a somewhat similar 
example using the usual Shape/ Square/ Rectangle hierarchy in the Java language, 
by Rayside (2001).  The main assembly listing is shown in Table 1 below.  The 
components were compiled into .Net executables files and then run through the 
analyzer.  Then the analyzer is evaluated and demonstrated to operate on a multi-
assembly application where one assembly was constructed using a compiler from 
another vendor.

Firstly, the analyzer was run without Class Hierarchy Analysis, and as would be 
expected, this was processed extremely quickly, but also incorrectly includes an 
edge between AnimalInheritance.doATrick(Mamal) and Mamal.rollOverAnd-
PlayDead().  Class Hierarchy Analysis (CHA) can be described as the process 
of the calculation of a program’s inheritance hierarchy (Dean et al. 1995, pg. 1).  
Performing Class Hierarchy Analysis produces some form of Class Hierarchy 
Graph (whether explicit or implicit).  This structure describes all the inheritance 
relationships between the classes in the program, as well as the methods that each 
class contains, particularly virtual and overridden methods and which ones are 
abstract (Bairagi 1997, pg. 2). In this case, the runtime was on the order of 47ms 

in this case.  This value appeared quite stable and repeated runs did not alter this 
value appreciably.  The results of a particular run can be viewed in Figure 3.  

Following these experiments, the analyzer was run with the aid of Class Hierarchy 
Analysis, but using a conventional full-program scan to build the class hierarchy.  
The results for this can be seen in Figure 4.  As expected this was several orders 

Table 1. Animal taxonomy main listing (written in C#)

 1: namespace AnimalInheritance {
 2:   abstract class Mamal { public abstract void rollOverAndPlayDead (); }
 3: 
 4:   class Cat     : Mamal { public override void rollOverAndPlayDead() { } }
 5:   class Hamster : Mamal { public override void rollOverAndPlayDead () { } }
 6:   class Dog     : Mamal { public override void rollOverAndPlayDead () { } }
 7:   class Terrier : Dog { }
 8: 
 9:   class AnimalInheritance {
10:     static void doATrick ( Mamal m ) {
11:       m.rollOverAndPlayDead();
12:     }
13: 
14:     static void Main ( string[] args ) {
15:       doATrick( new Terrier() );
16:     }
17:   }
18: }

Figure 3. Execution of call graph analyzer without class hierarchy analysis

Figure 4. Execution of call graph analyzer with class hierarchy analysis
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of magnitude slower, both in space and time required, comparing the number of 
classes and methods processed and the time taken to the previous run.  Time taken 
was approximately 7593ms (with an estimated variance of about 200ms based on 
observing repeated runs).  This is at least 2 orders of magnitude larger than before.  
The discrepancy between the storage requirements here and previously is even 
more staggering: approximately 2,000 classes processed versus just 5 before and 
about 20,000 methods seen versus just 6 before.  

Here we can see the analyzer now being very conservative, by now including all 
three of Cat, Hamster and Dog classes as being receiver classes of the rollOverAnd-
PlayDead method call (together with also including for safety, all visible types in 
all referenced assemblies.  Finally, we show an example where the analyzer was 
run to strictly include only the reachable types when building the Class Hierarchy 
Graph (CHG).  (This is in terms of processing result much like that of the RTA 
algorithm by Bacon and Sweeney (1996), however the actual algorithm is rather 
different.):   The output was as follows:

The performance is markedly improved, evidently back to where it was in the 
beginning in terms of time, with the class count also being the same as the first 
experiment and the method count being marginally higher.  More importantly, the 
result is also a lot more accurate, thanks to the extra intelligence employed.  Clearly 
the cost of blindly traversing all of the “visible” program code, without analyzing 
whether it is in fact reachable from the main entry point is enormous.  

One of the key goals of this research was to prove that it was possible to do 
multi-language/multi-module full-program analysis.  We therefore also tested the 
analyzer with several multi-language scenarios, including this one where a C# 
application calls on a Borland Delphi library.  The source for the both functions 
are given in Table 2.

These two programs were compiled by completely different compilers written 
by completely different vendors.  The main program was fed into the analyzer as 
input.  The output is shown below in Figure 6.

As can be seen, the analyzer had no problem with the fact that the library was 
originally written in another source language, as should be expected.  It can be 
inferred that a different language was used through visual inspection from the 
type names, but that is all.  There are no other obvious differences.  It would be 
interesting to re-run some of these tests against/on the Mono platform.

5. brief diScUSSion 
Most conventional program analysis approaches employ source based approaches, 
either simple text I/O or actual scanning and parsing techniques.  In some cases 
byte-code analysis is also used, although this (with a few exceptions) focuses on 
Java bytecode rather than .Net CIL.  While a detailed quantitative comparison 
of techniques is outside the scope of this research, it is nevertheless useful to try 
and establish qualitatively the relative strengths of the various approaches, so as 
to establish whether the .Net CIL based approach is comparable, better or poorer 
than conventional techniques.  There does not appear to exist any comparative 
study in the literature that compares both source and bytecode based approaches 
as part of the one study.  Murphy (1998) presents an empirical study of static call-
graph constructors and states that “four choices of input format are available for 
the developer of an extractor for a system implemented in C: unprocessed source, 
preprocessed source, object code with symbol table information, and executable 
code with symbol table information.”  Unfortunately they also state that their 
focus was on source based processing in their study and that object-code based 
analysis was thus out of scope.

The first observation to make is that .Net CIL files tend to be very compact.  
The IL assembler language is actually quite simple, and while op-code’s can be 
multiple bytes, most of them (90%) are in fact single bytes.  To be precise, there 
is at present only 250 op-codes, 225 of which occupy a single byte, the remain-
der occupying 2 bytes (Lidin 2002, pp 422 - 428).  Roughly speaking, based on 
estimates observing the ratios of source code to binary size of the Analyzer code, 
test case libraries and example libraries produced as part of this research, it would 
appear that the ratio of IL binary size vs. Original Source code size would be about 
2:3.  More investigation would be needed to establish whether this observation 
is borne out in larger systems.  But in any case, in terms of I/O overheads, it can 
therefore be argued that IL will probably be as easy or easier to deal with than 
text based source code.  

Of course, on today’s machines, I/O throughput is unlikely to be a significant 
bottleneck during program analysis.  However, as can be observed by trying to 
analyze even trivial programs with the analyzer while employing a naive approach 
to what is read as “potentially callable,” it is quite possible to have the analyzer 
consume several hundred megabytes of memory and take several minutes of pro-
cessing time.  So the real problem lies with managing the intermediate in memory 
representation, and with the algorithms employed during analysis.  Here the IL 

Figure 5. Execution of call graph analyzer for reachable types

Table 2. Call graph analyzer multi-module example: Program code

using System;
using System.Collections.Generic;
using System.Text;
using DelphiLib;

namespace CSAppRefDelphiLib {
  class CSAppRefDelphiLib {
    static void Main ( string[] args ) {
      TFact fact = new TFact();
      System.Environment.Exit( fact.Fact( 5 ) );
    }
  }
}

library DelphiLib;
 type
   TFact = class
   public
     function Fact (n : integer) : Integer;
   end;
 
 function TFact.Fact( n : Integer) : Integer;
 begin
   if n = 0 then
     result := 1
   else
     result := n * Fact(n -1 );
 end;
 
 begin
 end.

C# Main Program Code Delphi Library Code

Figure 6. Call graph analyzer multi-module example
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based approach will suffer the same challenges faced by text based approaches 
– there is essentially no advantage to either approach from this point of view.  

Comparing Java bytecode based analysis to .Net bytecode based analysis, it ap-
pears that some of the Java bytecode approaches suffer somewhat partly because 
of weaker reflection support (whether third party libraries or in the platform.)  
Lance (1999, pg. 5) presents their “JAristotle” bytecode based Java program 
analyzer.  He remarks that the development of the bytecode based prototype 
required the writing of (only) 13,700 lines of Java code, and contrast this with 
the prior “Aristotle” based front-end (which was source based) and required 
modification to some 30,000 lines of an existing C parser to implement.  While 
probably not directly comparable (since that analyzer computes intra-procedural 
flow-graphs, not call-graphs) it is nevertheless instructive to note that the .Net 
CGAnalyzer source code consist of approximately only 1500 lines of C# code, 
and this includes more than one approach to the analysis as well.  This appears 
to be due in part to to the stronger reflection and introspection support in the .Net 
platform which enabled us to avoid writing code to directly deal with IL bytecode.  
This advantage is in addition to and apart from the implied advantages of being 
able to analyze whatever language target the .Net platform.

6. conclUSion And fUtUre worK
This research project investigated the possibility of leveraging .Net’s CIL bytecode 
together with reflection support as a vehicle for static program analysis, in particular 
call-graph analysis, and successfully implemented a prototype to prove the concept.  
Like Lance (1999) this approach has the benefit of sidestepping the usual lexical 
and syntax analysis that is associated with conventional source based analyzers, 
with a consequent lowering of the amount of effort required to get a working 
analyzer going.  Unlike Lance (1999) our approach focuses on .Net, a platform 
that is deliberately multi-language, and one that is likely to be increasingly used 
as a platform for legacy migration.  In this way, this work therefore will ultimately 
contribute towards easing the maintenance burden for legacy systems.  

The focus on .Net has also made the entry to program analysis easier in other 
ways.  There are a number of API’s and libraries available to choose from that 
can shield one from having to even deal with the bytecode oneself.  All of this is 
reflected in the number of lines of code that was required to effectively imple-
ment a protoype analyzer with several analysis features, including a form of Class 
Hierarchy Analysis and an RTA-like call-graph generation algorithm (that uses a 
“reachable types only” approach to limit the amount of analysis work done.)

There are clearly many potentially interesting areas for future work:  This research 
project was originally started with a view to call-chain analysis.  Having now 
developed a basic call-graph one could now go directly forward and add some 
form of call-chain analysis.  Call-chain analysis is sometimes used in the context 
of integration test coverage analysis (see for example (Rountev 2004b)), which 
requires dynamic analysis support as well to measure the actual chains occur-
ring at runtime.  As such, another avenue of work may be to investigate dynamic 
analysis support on the .Net platform with a view to fully supporting call-chain 
analysis as part of integration test coverage.
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