
Managing Worldwide Operations & Communications with Information Technology 785

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Integrating Formal Methods with
Reuse Techniques

Laura Felice, INTIA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina; E-mail: lfelice@exa.unicen.edu.ar

Carmen Leonardi, INTIA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina; E-mail: cleonard@exa.unicen.edu.ar

Ma. Virginia Mauco, INTIA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina; E-mail: vmauco@exa.unicen.edu.ar

AbsTRAcT
It is widely accepted by software community that formal methods increase soft-
ware quality and reliability, and even though their industrial use is still limited
it has steadily been growing. A well-known formal method is the RAISE Method
[4,5] based on the idea that software development is a stepwise. Originally
designed to be applied at different levels of abstraction as well as stages of
development, RAISE is successfully applied to different domains obtaining high
precise specifications of components. However, there is no explicit reference to
the specification reusability in the process. Feature models have received much
attention in the software engineering community who see the Domain Analysis
[7] as a prerequisite in a successful reuse, for example FODA [8], FORM [9]
and Featured Reuse-driven Software Engineering Business (FeatuRSEB) [6].
This paper presents a brief overview of feature modeling and the integration
into RAISE. Some key relations between features are formalized using RAISE
specification language [3]. Such integration allows to take advantage of formal
methods in the context of software reuse.

InTRoducTIon
Formal methods have come into use for the construction of real systems, as they help to
increase software quality and reliability, and even though their industrial use is still lim-
ited it has steadily been growing. A well-known formal method is the RAISE Method,
which has been used on several real developments. By using formal methods early
in the software development process, ambiguities, incompleteness, inconsisten-
cies, errors or misunderstandings can be detected, avoiding their discovery during
costly testing and debugging phases.

In particular, there are two main activities in the RAISE method: writing an initial
specification, and developing it towards something that can be implemented in a
programming language. Writing the initial specification is the most critical task in
software development. If it is wrong, i.e. if it fails to meet the requirements, the
following work will be largely wasted. It is well known that mistakes made in the
life-cycle are considerably more expensive to fix than those made later.

Our goal is to work with reuse in the confines of the domain engineering, where
there is no reference in RAISE process. Therefore, the introduction of a Domain
Analysis method into RAISE is a crucial task considering the possibility of reus-
ing the specifications in the future.

Examples of more relevant Domain Analysis methods include FODA, FORM
and Featured Reuse-driven Software Engineering Business (FeatuRSEB). They
support the notion of feature-oriented. This is a concept based on the emphasis
this method places on finding the features or functionalities usually expected in
applications for a given domain.

In a reuse strategy, domain analysis must be maintained over many systems, and
the repository should contain domain models that form the basis of subsequent
development activities. Domain analysis is essential to formalize reuse. How-
ever, it is missing from most software development methods. Reuse engineering
extends information engineering by adding this new stage, to provide a place in
the life cycle where the most valuable reusable components for the domains of
the enterprise can be identified and a library containing these components can be
created. At this stage of the software development, working with formal methods
(or formal specification languages, specifically) implies to provide a means of
unambiguously stating the requirements of a system, or of a system component.
In this way, formally specified system components that meet the requirements of

components of the new system can be easily identified. Thus, components that
have been formally specified and sufficiently well documented can be identified,
reused and combined to form components of the new system.

Nevertheless, the main problem is that we may not understand the requirements.
Specially, when the requirements are written in a natural language the result
is likely to be ambiguous. The aim of the initial specification is to capture the
requirements in a precise way applying a reusability model.

Based on this paradigm, our work consists in the incorporation of the feature
model into a RAISE formal method, filling the gap between requirements and
the RSL (RAISE specification language) specifications. In this work we suggest
introduce the phase -reusable domain analysis- using a feature model and ex-
pressing the relationships among them in RSL language. Thus, we can combine
domain analysis notions with a formal language in early phases of development
process. Particularly, we use the feature model proposed by FORM method,
briefly described in section 2.

The remainder of the paper is organized as follows. In section 3, we briefly intro-
duce the Raise method. Section 4 presents the integration of Domain analysis into
RAISE. In section 5 we give a formalization of the relation in a feature model in
RSL language. Section 6 concludes the paper and describes future work.

2. The FoRM MeThod
 FORM product line engineering consists of two major processes: asset development
and product development. Asset development consists of analyzing a product line
(domain analysis, feature modeling) and developing architectures and reusable
components based on analysis results. Product development includes analyzing
requirements, selecting features, selecting and adopting architecture, and adapting
components and generating code for the product.

The FORM (Feature-Oriented Reuse Method) method comes as a concretization
of the FODA (Feature-Oriented Domain Analysis) processes and has been recently
extended by Feature Oriented Product Line Software Engineering (FOPLE)
[10,11]. It provides guidelines for the creation of the feature model, design and
implementation phases. FORM performs an analysis of domain´s features and
attempts to provide a mapping between features and architectural components.
This method follows all principles of modern software, being flexible, extendible
and maintainable.

The use of features is motivated by the fact that users and developers often speak
of product characteristics in terms of “features the product has and/or delivers”.
That is, services provided, and techniques used in applications are abstracted as
features, and they are used by domain experts to communicate their ideas, needs,
and problems.

To create coherent models, feature analysis involves tasks for identifying, classify-
ing, and organizing product features as models. Feature models are a well accepted
means for expressing requirements in a domain on an abstract level, and it resides
between the requirements model and the system design model.

As potential features are identified, they are classified according to the types of
information they represent. For example, users are concerned with functions pro-
vided by the systems (i.e. service features); analysts and designers are concerned
about domain technologies, and developers are concerned about implementation
techniques.

786 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

FORM separates features into four different feature categories:

• Capability features are distinct services, operations, or non-functional aspects.
Features of this category are end-user visible and are selected by the customer
to specify the desired system.

• Operating environment features address the hardware and software components
used by the family. All the components of a system with their interfaces and
protocols are part of this category.

• Domain technology features are domain specific technologies and problem
solutions, used by domain experts.

• Implementation technique features are general problem solutions, which may

be used in different domains.

A feature model should cover all four categories of features for a domain. To
make it possible, FORM uses the following constructs:

A feature diagram: a graphical AND/OR hierarchy of features, capturing the
logical relationships (composition / generalization) among features. Three types
of relationships are represented in this diagram: “composed-of”, “generalization/
specialization”, and “implemented-by”. Features themselves may be “mandatory”
(unless specified otherwise), “optional” (denoted with a circle), or “alternative”
(denoted with an arc) [Figure 1]. A mandatory feature is neccesary for general

users, and an optional feature is neccesary for partial users. Czarnecki [1] intro-
duced the notion of sets of features.

Using the optional, mandatory and alternative criteria for features, it is possible
to define subsets with constraints for minimum and maximum number of features
to be taken out of this set.

Composition rules that supplement the feature diagram with mutual dependency
and mutual exclusion relationships.

Depending on the domain, it is possible that AND/OR diagram tends to become
complex. The AND/OR diagram was used to show the relationships among
selected features.

Features are considered following the four level feature hierarchy, since the hierar-
chy reflects step-wise refinement in the reference architecture. These concepts are
strongly connected with the style of development in RAISE, where the separate
and step-wise are the basis to build a solid specification of an infrastructure.

3. RAIse oveRvIew
RAISE method provides guidelines to hierarchically structure a specification, aiming
at encouraging separate development and step-wise development. A development
in RAISE begins with an abstract specification and gradually evolves into concrete

Figure 1. Types of features

 C

F

 Optional

 C

F

Mandatory

F1 F2

 C
Alternative

F1 F2

 C

Or

 C

F1 F2

Optional
Alternative

 C

F1 F2

Optional Or

Figure 2. RAISE phases and DE

Requirements
 Model

Scheme

 Module s

G lob al objects

t ypes

atributes

Abstract
applicative
M odul es

 Functions, axioms, invs..

Concrete
applicative
M odule s

Concrete efficient
applicative M odules

E fficiency
improvements

 CODE

Translation into target
language

RAISE Method phases

Domain
Analysis

Feature Model

 Categories +
Relations

Reference
Architecture

Reusable
Component
Development

Reusable
Component

 Domain Engineering

Feedbak for updating DM

Managing Worldwide Operations & Communications with Information Technology 787

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

implementations. RAISE proposes to structure modules hierarchically in order to
get a particular component over by reference only to it and its suppliers, to limit
the effects of changes of a module to it and its clients, and to limit the properties
of a module to it and its suppliers. It is an object-oriented method and covers a
large portion of systems development phases.

Moreover, the RAISE method permits the abstract specification of sequential as
well as concurrent systems, modular operations for decomposing large systems
into subsystems and composing subsystems into a more complex system.

4. InTegRATIng doMAIn AnAlysIs InTo RAIse
In this section we present the integration of domain analysis into RAISE method.
The underlying idea is to specify and design a family of systems to produce
qualitative application in a domain, as we can see in the lower part of figure 2,
promoting early reuse and reducing development costs.

Domain engineering gives a set of guidelines that can be used to derive domain
products from the feature model. The objective of domain engineering is to
establish a mapping between the decision space (Feature model) and the artifact
space (Reference Architecture). Each feature with the corresponding relations in
the decision space somehow constrains the selection of the final reference model
considering differences in types of features following the four level hierarchy.
Feature model gives a set of guidelines that can be used to derive domain prod-
ucts from it and it is considered as an intermediate step between analysis and
design models.

4.1 The Feature Model and Rsl Modules
The objective of a feature model is to capture commonalities and variabilities of
a family. There is a trace from the requirements to the feature model, and there
are relations within the feature model. Categories help to elaborate features, but
feature relations do not have a rigorous definition and we need the precise usage
of relations for modeling.

Given the example of [12] in Figure 3 (Feature Model of Agriculture system do-
main), next section deals with some relations among features, and we show them
described in a way we can automatically check the feature model for consistency.
“Agriculture system” is an information system whose objective is a model which
will help deciders to identify problems with the management and the access to
resources for several purposes. Following, we discuss how the feature model
serves as a guideline to identify RSL reusable modules.

In the partial example illustrated in Figure 3, Natural Resources service can be
mapped respectively, into Natural Resources RSL module, performing a set of
operations with its specific role. Once a feature is mapped into a module, the sub-
features of the feature such as Geographical Resources, Water, Inorganic resources,
Soils can be modules that are part of Natural Resources following the same type
of relationships in the feature model (e.g., generalization, aggregation).

Moreover, operations can be mapped as internal functions to provide services,
and they are a collection of types and values without type of interest. On the other
hand, non-functional features include end-user visible application characteristics
that cannot be identified in terms of services or operations, like quality attribute,
cost, etc. So, they can not be mapped into any RSL constructions.

With respect to the model operating environment features, the RSL specifications
are independent from the operating environment. These features can be mapped
into the subsidiary RSL modules, which are less important from the point of
view of development.

Model domain technology features such as GIS systems will be considered by
the RSL system modules and they will be expected to be finally implemented
as software modules. In object-oriented terms they will form the objects of the
software system.

Modules derived from implementation technique features are generally used to
implement or to derive concrete applicative specifications derived from capability
or domain technology features. Geometric Algorithms would be part of a module
called “Algorithms”. This module will be defined as a generic module, i.e. a
module we expect to instantiate more than once with different parameter, being
the sub-features (Convex_Hull or Intersection) the possible instantiations. Each
RSL module derived would be later refined and completed with the definition of
functions. Once the RSL modules are derived from the feature model, they need
to be organized into a model in order to represent how they are related to each
other and what the contexts for their use are.

This simple heuristic is very useful in providing a good first reference architecture
that will be the basis to specify the Concrete applicative RSL modules.

4.2 dependencies in a Feature Model
To complete the feature model, we give an overview of dependencies used not
only in FORM but also in FOPLE and FeatureRSEB. “Composed of” relation
is used when a parent feature consists of a set of child features. “Generaliza-
tion/specialization” relation connects very general features with concrete ones.
“Implemented by” relation represents a connection between user-visible features
and their implementation strategy, used in the specific domain. In Figure 3 we
have taken a subset out of all the features of the Agriculture system. We show
features of Natural Resources services: the features “Geographical resources”,
“Water”, “Inorganic resources” and “Soils” are so-called mandatory features,
and are part of the instance by definition.

The Capability layer is used to represent the details of the family required to further
develop the system design, while Domain technology layer are specific technolo-
gies and problem solutions linked with the sub-feature Geographical resources.
The Implementation technique layer are the ‘solutions’ used by domain experts
(Example: Geographic objects are “implemented by” Geometric algorithms).
“Requires” dependency (uni-directional) is used to describe if one feature needs
another (e.g. Animal services “requires” Pasture, figure 4). “Exclude” depen-

Natural Resources services

Geographical resources
 Water

 Inorganic resources
 Soils

GIS system

Capture data
 Manipulation data

 Process data
 Display data

Geographic objects

Geometric algorithms

Convex_Hul
 Intersection

Capability layer

Domain technology
layer

Implementation
technique layer

Implemented_by

Composed_of

Composed_of

Implemented_by

Users services

Human
 services

 Animal
 services

Pasture

Rotations

Periodic
 Non - programmed

requires

Figure 3. Agriculture System partial feature model

Figure 4. “Requires” relation

788 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

dency (bi-directional) is used when one feature conflicts with another. “Hints”
dependency is used to express that the choice of another feature increases the
system usage. “Mathematical” dependency describes the relative impact from
one feature to another.

5. FoRMAlIzIng The RelATIons oF The FeATuRe
Model In Rsl
RSL is one of the most versatile and comprehensive languages for formal speci-
fication, design and development of software. A significant advantage of using
RSL is that it combines both algebraic and coalgebraic specification techniques
in one specification language.

Different features in a feature model are related by different kinds of relations.
Generalization, requires, excludes and implemented_by are considered binary
relationships. Each relation in a feature model must be well formed. Next, the
structure for each type of relation is defined as follows:

 type

 Rel={|r:Rel1 . well_formed (r) |},
 Rel1=
 Generalization | Implemented_by | Composed_of | Requires |
 Excludes ….
type
 Generalization::
 subfeature: Feature
 superfeature: Feature,
 Composed_of::
 has-part: Feature
 Part-of: Feature-set,
 Implemented_by::
 source: Feature
 target: Feature,
 Requires::
 source: Feature
 target: Feature,
 Excludes::
 source: Feature
 target: Feature,
 …………….

Below, we give the boolean function “well_formed” used to define well-formed
relationships. Each relation has different properties. For example, the “gener-
alization” relation must satisfy the following: a subfeature can not be root; the
superfeature can not be leaf and the subfeature can not redefine the attributes
of their superclasses. The “requires” relation describes that the binding of one
variant implies the need of another variant (required variant). “Excludes” defines
a feature relation that the selection of one feature excludes the selection of the
other (see below).

Also, as relations are described in RSL language, all the concepts involved in the
feature model can be specified in RSL. Multiplicity for features and parameters for
features [1] in a graphical notation way may result ambiguous. It is neccesary to
give clear semantics. The need to consider the complete set of relations has been
identified by the feature modelling community, and approaches to formalizing
them are defined in several formal languages [2, 14].

6. conclusIons
The use of formal methods in system development can help to overcome in-
consistencies, and should aid the promotion of software reuse in early stages of
software development. In this paper we present a first approach to integrate a
feature model into RAISE methods to be used in the context of software reuse.
The feature model enables to work with the identification of commonalties and
variabilities among related applications creating a feature model of a specific
domain. More precisely, a feature model has been developed for the “Agriculture
system” being the basis to the specifications of the RAISE reusable component.
In this work we identified basic features relations, i.e. Generalization, Requires
and Exclude, among the features in a domain context. Our contribution is not only
to define features, categories and relations in RSL; but also to give an approach
to a rigorous reasoning of feature models. We are currently extending the work
by taking feature interaction [13]. Feature interaction occurs when one feature
modifies the operations of another. Also, we are working towards a reference
architecture in the RAISE method framework.

ReFeRences
[1] Czarnecki, K. “ Generative Programming”. Dissertation TU-Ilmenau, 1998.
[2] Detlef Streifert, Matthias Riebisch, I. Philippow; Formal Details of Relations

in Feature Models; In:Proceedings 10th IEEE Symposium and Workshops on
Engineering of Computer-Based Systems. USA April 2003.

[3] George, C., Haff, P., Havelund, K., Haxthausen, A., Milne, R., Nielsen, C.,
Prehn, S. and Ritter, K. The RAISE Specification Language, Prentice Hall,
UK, 2002.

[4] George, C. RAISE Tools User Guide. (Technical report No.227) Retrieved
from http:// www.iist.unu.edu, 2001.

[5] George, C., Haxthausen, A., Hughes, S., Milne, R., Prehn, S. and Pedersen,
J., The RAISE Development Method, Prentice Hall, UK, 1995.

[6] Griss, D.; Allen,R. And d´Alessandro, M.: “Integrating Feature Modelling with
the RSEB”. In Proceedings of the 5th International Conference of Software
Reuse (ICSR-5), 1998.

[7] Hess, J; Novack, W; Carrol, P; Cohen, S; Holibaugh, R; Kang, K; and Peterson,
A. “A domain analysis bibliography”. SEI-90-SR-3 Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

[8] Kang, K., et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study
(CMU/SEI-90-TR-21, ADA235785). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1990.

 “Generalization” RSL construct “Requires” RSL construct

“Excludes” RSL construct

value
 well_formedGen: Feature x Feature-> Bool
 well_formed Gen (subfeature, superfeature) ≡
 ~is _root(subfeature) ^
 ~is_leaf(superfeature)^

 (∀at1,at2: Attribute .
 (at1∈ attributes(subfeature)^ at2 ∈
 attributes(superfeature))⇒
 name(at1)≠ name(at2)

value
 well_formedReq: Feature x Feature-> Bool
 well_formedReq (requester, supplier) ≡
 is_selected(requester) ⇒ is_selected (supplier)

value
 well_formedExc: Feature x Feature-> Bool
 well_formedExc (source, target) ≡
 is_selected(target) ⇒ ~is_selected (source) ^
 is_selected(source) ⇒ ~is_selected (target)

Managing Worldwide Operations & Communications with Information Technology 789

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

[9] Kang, K; Kim, S, Lee, J and Kim, K “FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures”. Annals of Software
Engineering, 5, pp: 143-268.

[10] Kang, K; Kim, S, Lee, J and Kim, K “Feature-Oriented Product Line Software
Engineering: Principles and Guidelines. In: Domain Oriented Systems Devel-
opment: Practices and Perspectives”. Taylor & Francis, 2003, pp: 19-36.

[11] Lee, K; Kang, K; Chae, W and Choi B. “Feature-based approach to object-
oriented engineering of applications for reuse”. In Software -Practice and
Experience 2000:3. J.Wiley &Sons Ltd, pp: 1025-1046.

[12] Riesco, D; Felice, L; Debnath, N and Montejano, G (2005). Using a feature
model for RAISE specification reusability. In Proceedings of the 2005 IEEE
International Conference on Information Reuse and Integration, IRI – 2005.
Las Vegas, NV USA. (pp: 306-311).

[13] Zave, P. Feature interactions and formal specifications in telecommunica-
tions. IEEE Computer. 1993.

[14] Zhang, Hongyu; Jing Sun and Hai Wang, Formalizing and Analyzing Feature
Models in Alloy, RMIT CS Technical Report TR-04-2, March 2004.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/integrating-formal-methods-reuse-

techniques/33185

Related Content

Gamification Design Elements in Business Education Simulations
Torsten Reiners, Lincoln C. Wood, Sue Gregoryand Hanna Teräs (2015). Encyclopedia of Information Science

and Technology, Third Edition (pp. 3048-3061).

www.irma-international.org/chapter/gamification-design-elements-in-business-education-simulations/112730

The View of Systems Thinking of Dr. James Courtney, Jr.
 David Paradice (2009). International Journal of Information Technologies and Systems Approach (pp. 70-75).

www.irma-international.org/article/view-systems-thinking-james-courtney/2547

Home UbiHealth
John Sarivougioukas, Aristides Vagelatos, Konstantinos E. Parsopoulosand Isaac E. Lagaris (2018).

Encyclopedia of Information Science and Technology, Fourth Edition (pp. 7765-7774).

www.irma-international.org/chapter/home-ubihealth/184472

Social Welfare-Based Task Assignment in Mobile Crowdsensing
Zheng Kangand Hui Liu (2023). International Journal of Information Technologies and Systems Approach (pp.

1-28).

www.irma-international.org/article/social-welfare-based-task-assignment-in-mobile-crowdsensing/326134

Impact of PDS Based kNN Classifiers on Kyoto Dataset
Kailasam Swathiand Bobba Basaveswara Rao (2019). International Journal of Rough Sets and Data Analysis

(pp. 61-72).

www.irma-international.org/article/impact-of-pds-based-knn-classifiers-on-kyoto-dataset/233598

http://www.igi-global.com/proceeding-paper/integrating-formal-methods-reuse-techniques/33185
http://www.igi-global.com/proceeding-paper/integrating-formal-methods-reuse-techniques/33185
http://www.igi-global.com/proceeding-paper/integrating-formal-methods-reuse-techniques/33185
http://www.irma-international.org/chapter/gamification-design-elements-in-business-education-simulations/112730
http://www.irma-international.org/article/view-systems-thinking-james-courtney/2547
http://www.irma-international.org/chapter/home-ubihealth/184472
http://www.irma-international.org/article/social-welfare-based-task-assignment-in-mobile-crowdsensing/326134
http://www.irma-international.org/article/impact-of-pds-based-knn-classifiers-on-kyoto-dataset/233598

