
648 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

An Optimal Query Execution plan for
Database systems

Hassan Pournaghshband, Southern Polytechnic State University, USA; E-mail: hpournag@spsu.edu

Vahab Pournaghshband, University of California-Berkeley, USA

Shahriar Movafaghi, Southern New Hampshire University, USA; E-mail: s.movafaghi@snhu.edu

AbsTrACT
A major decision for the query processor of the database management system in
centralized as well as distributed environments is how a query can produce the
result as efficiently as possible. The typical query optimizer will not necessarily
produce an optimal query plan. It simply tries to find the best possible plan within
a minimum amount of time using mostly semi-accurate statistical information. In
this paper, we discuss major issues regarding query optimization for relational
database management systems, and expand the optimization issues for distributed
database systems (DDBSs) to show how the query optimizer can choose an optimal
plan for efficient execution of those queries that require multiple-site participations
for producing the result. An algorithm that can be used toward more efficient query
processing is presented. Our algorithm examines frequently used queries, and
identifies two categories of groups of queries. First, a group of queries requiring
the same procedures (including operations used), and second, a group of queries
requiring data from the same site (or set of sites) for producing the result

1. InTrODuCTIOn
Query processing in a database environment refers to a series of activities involved
in updating and retrieving data from database and it can be divided into four
major phases: decomposition phase (consisting of scanning, parsing and valida-
tion), optimization phase, code generation phase, and execution phase [1]. Even
though in this paper, we are mainly concerned about optimization and related
issues regarding this phase of query processing, we believe a brief examination
of all phases can be valuable [also see references 2, 3, 4, and 5].

Decomposition (Scanning, Parsing, and Validation) – The job of the scanner is
to identify the language tokens found in the query, whereas the parser checks
the query syntax. Validation is done to make sure that all relations and their
attributes are valid and meaningful.

Optimization –There are generally many different methods that can be used to
process a query and compute the result. Query optimization is the process of
choosing the most efficient strategy for computing the result.

Query Code Generation – Once an “optimal” execution plan is produced by the
query optimizer, it is the job of the code generator to generate the code for
executing the plan.

Query Execution – The runtime database processor is responsible for executing
the code (generated by the query code generator), whether in compiled mode
or interpreted mode, to produce the response to the query.

We now return our attention on query optimization which is the focal point of
this paper. Query optimization sub-module of the query processing module in
centralized as well as distributed environment has been a subject for significant
research and development. The term optimization is in a sense a misnomer (as
claimed in [4]) because in some cases the efficient execution plan selected by
the query optimizer is not necessarily the optimal strategy, but it is in fact just a
reasonably efficient strategy for executing the query [4]. Hence, when dealing
with query optimization, it would necessary to examine plans for different execu-
tion strategies. The process of selecting the execution plan for a given query can
be divided into several detailed plans such as designing an efficient algorithm
for executing an operation, the order of executing relational algebra operations,
choosing the specific indices to use, and so on. In addition, there are other issues
that are of particular interest for a distributed environment that are discussed in
the next section.

2. DIsTrIbuTED QuEry prOCEssIng
The query optimizer chooses the most efficient query execution plan at the
relational algebra level. In other words, the query optimizer attempts to find a
relational algebra expression that is equivalent to the given expression, but it is
more efficient to execute. This issue of finding equivalent expression needs to be
discussed in great details and it is beyond the scope of this paper. Interested readers
are encouraged to see [5]. In a distributed environment there are essential aspects
of the query processor that have to be considered alongside those for centralized
databases [6]. While distributing data across different sites allows those data to
reside where they are most needed, but it also makes them accessible from other
sites. Therefore, to process a query initiated at one site, we might need to make
some data movements among several sites. And since transmission of data and
messages across communications lines has a tendency to slow down the whole
process, the order of data movement (that is, what data from which site should
be moved first, what data should be moved next, and so on) among sites must
be considered as an essential aspect of query processing for distributed database
systems. One other essential aspect, worthy to consider, regarding query optimi-
zation for distributed database systems is the existence of multiple processor in
the network. This allows for parallel processing of queries (and sub-queries) and
data transmission which could lead to a faster response [6]. In our approach, as
we will see in Section 3, these issues play a vital role in producing the optimal
execution plan.

3. “OpTImAl” ExECuTIOn plAn
In both, centralized and distributed database systems, it is the responsibility of the
query optimizer to transform the query as submitted by the user into an equiva-
lent query that can be executed more efficiently. To do this, the query optimizer
estimates the evaluation cost of each strategy and decides if the chosen strategy
has the least cost. One process in estimating the execution cost of a query is to
estimate the result size of each operation in each possible execution sequence.
This is of prime interest because the size of the intermediate relations plays a
significant role in the performance of an execution strategy. Unfortunately, there
is no general consensus on the method of estimating the size of intermediate
results. Among different techniques that have been proposed in the literature the
one that is given in [7] is based on the Discrete Fourier Transformation. Their
algorithms present tradeoffs between accuracy of the approximation and memory
requirements. The estimation of size of the intermediate relations is based on sta-
tistical information about the relations, their attributes, and indexes. One problem
regarding this approach is that most systems do not update the statistics on every
change. This could lead to inaccurate estimates, and thus selection of strategies
far from optimal. An alternative approach has been examined in {8 and 9] and
others. Discussion of their approach, which in fact is dynamic query execution,
is beyond the scope of this study.

The selection of a good strategy statically can be made effectively by the prediction
of execution costs of the alternative plans prior to actually the executing the query.
The execution cost is basically expressed as the combination cost of CPU, I/O and
the communication costs (for distributed systems). In centralized systems, many
cost functions ignore the CPU factor and emphasize on I/O cost. They compare
different evaluation plans in terms of the number of block transfers between sec-
ondary storage and main memory. This (i.e., efficient memory management) has
attracted the interest of many researchers such as [10, 11, and 12]. Whatever the
cost factor (CPU or I/O, or both, plus communications for DDBSs), to estimate
the cost for a given plan, the query optimizer estimates the cost of individual
procedures making up the plan, and adds them together to get the total cost of

Managing Worldwide Operations & Communications with Information Technology 649

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

executing the query. The process of cost estimation for individual procedures is
repeated for those procedures used in different execution plans, and thus, it could
become a very time consuming task. To overcome this problem, authors in [13]
suggest the design of a query optimizer that examines current queries and gener-
ates a master plan for each group of queries requiring the same set (or subset) of
individual procedures. The task of identifying similar queries that can be grouped
together can in turn become cumbersome if not done efficiently. The fact that in the
distributed database system the data reside in different locations can be a cause of
many difficulties in query processing and optimization. In a DDBS each site may
initiate a query, and may access data at that site and/or at several other sites on
the network. In fact, the query may be broken into a set of sub queries that must
be executed in order to produce the result of the query. In our approach, for an
efficient process, we design an optimizer which examines frequently used queries,
and identifies the following two categories of groups of queries: 1) Groups of
queries requiring the same procedures (including operations used), and 2) groups of
queries requiring data from the same site (or set of sites) for producing the result.
Each of these two categories of queries is explained below and an algorithm that
generates these groups from a set of queries is given in Section 4.

1. Groups of queries requiring the same procedures (including operations used)
- For these groups, the query optimizer generates a super-query execution
plan for each group before breaking it into a set of sub queries for execution.
Of course, as mentioned earlier, the task of grouping queries can become
costly if not done efficiently. Since Join operation is one of the most time
consuming and costly operations in query processing, we take into account
the Join operation as the first criterion for grouping queries in this category.
That is, the query optimizer must begin this process by grouping queries
that have Join operation in common (i.e., Joining the same relations as their
operand.) Next, the query optimizer identifies those queries that have in com-
mon, binary operations (other than the join) such as the Cartesian Product.
Finally, it reviews the remaining queries to identify and group those queries
that share the same predicates (or part of them for compound predicates)
for Selection operation. For each of the above groups, the query optimizer
combines participating queries into a super-query before breaking it into a
set of sub-queries for efficient execution of each query member of the set.

2. Groups of queries requiring data from the same site (or set of sites) for pro-
ducing the result - For these groups, the query optimizer generates a super
query execution plan according to data being used, and then breaks it into
a set of sub-queries (one sub-query for each site participating in the plan)
for efficient execution of sub-queries. This minimizes the amount of data
movement among sites. In addition, the nature of DDBSs and the existence
of multiple processors in the network allows for parallel processing of these
sub-queries and simultaneous data transmission between sites. This could
significantly speed up the process of producing the result. Furthermore, the
query optimizer can follow the same process discussed earlier for the first
category of groups for even more efficient execution of these sub-queries.
That is, each sub-query of a group in second category, can be treated as a
base query of the first category. In other words, each sub-query of the second
category becomes a super-query discussed for the first category of groups of
queries.

4. ThE AlgOrIThm
This algorithm generates two groups of queries. A group of queries requiring the
same procedures (including operations used) and a group of queries requiring
data from the same site (or set of sites) for producing the result. It also generates
a group of queries belonging to both of the above groups

The algorithm reads as its input a set of queries and generates as its output the
sets of “groups” of queries discussed above.

Algorithm:
Input: A set of queries Q = {q1, q2, …, qn}.

Output: Three sets of groups of queries G1, G2 and G3.

Step 1: Scan queries in Q to identify

a. those queries requiring the same relations that must be JOINed for producing
the results. Call this set P (P is a subset of Q) and

b. those queries requiring data from the same site(s) for producing the results.
Call this set T (T is also a subset of Q).

Step 2: Scan queries in (Q – P) to identify queries requiring the same relations
that are operands for binary operations (other than JOIN) for producing results.
Call this set R (R is a subset of (Q – P))

Step 3: Scan queries in (Q – P – R) to identify queries requiring the same relations
that must use the SELECT operation with common set (or subset, if compound
predicate) of predicates. Call this set S (S is a subset of (Q – P – R))

G1 = {P, R, S}

G2 = {T}

G3 = {G1 Ω G2)

End Algorithm

5. COnClusIOns
There are different techniques used by the DBMSs in processing and optimizing
high-level queries submitted by users. In this paper, we first discussed the major
issues regarding query plan evaluation for query processing and showed how the
query optimizer can choose an optimal plan for efficient execution of queries. We
then discussed an efficient process for designing an optimizer which examines
frequently used queries, and identifies two categories of groups of queries. One
groups of queries requiring the same procedures (including operations used), and
one groups of queries requiring data from the same site (or set of sites) for pro-
ducing the result. Finally, we presented an algorithm which examines frequently
used queries, and identifies those two groups of queries.

rEFErEnCEs
1. C. Connoly, C. Begg, and A. Strachan, “Database Systems,” 2nd Edition,

Addison-Wesley, 1999.
2. S. Movafaghi and H. Pournaghshband, “Data Warehouse Query Processing

and Optimization Architecture,” Proceedings of the Software Engineering-
Research and Practice Conference, June 2004.

3. J. Yang, et. al., “Tracking the Challenges of Materialized View Design in Data
Warehouse Environment”, Proceedings of the 7th International Workshop on
Research Issues in Data Engineering,” 1997.

4. R. Elmasri, et. al., “Fundamental of Database Systems,” 4th Edition, Addison-
Wesley, 2003.

5. A. Silberschatz, H. F. Korth, and S. Sudarshan, “Database System Concepts,”
5th Edition, McGraw-Hill, 2006.

6. D. Bell, and J. Grimson “Distributed Database Systems,” Addison-Wesley,
1992.

7. K. Srac, O. Egecioglu, and A. E. Abbdi, “Iterated DFT Based Techniques for
Join Size Estimation,” Proceedings of ACM-CIKM Conference, 1998.

8. P. Bodrik, J. S. Riordon, and C. Jacob, “Dynamic Distributed Query Process-
ing Techniques,” Proceedings of ACM-CS Conference, 1989.

9. R. L. Cole and G. Graefe, “Optimization of Dynamic Query Evaluation Plans,”
Proceedings of ACM-SIGMOD Conference, 1994.

10. B. Nag and D. J. DeWitt, “Memory Allocation Strategies for Complex Deci-
sion Support Queries,” Proceedings of ACM-CIKM Conference, 1998.

11. L. Bouganin, O. Kapitskaia, and P. Valdurier, “Memory-Adaptive Schedul-
ing for Large Query Execution,” Proceedings of ACM-CIKM Conference,
1998.

12. L.D. Shapiro, “Join Processing in Database Systems with Large Main Memo-
ries,” ACM-TODS, vol 11, no 3, 1986.

13. H. Pournaghshband, A. R. Salehnia, “What makes a Query Processor Efficient:
Optimization Issues for DBMSs,” Proceedings of Association of Management
Conference, 1999.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/optimal-query-execution-plan-database/33155

Related Content

A Review of Literature About Models and Factors of Productivity in the Software Factory
Pedro S. Castañeda Vargasand David Mauricio (2018). International Journal of Information Technologies and

Systems Approach (pp. 48-71).

www.irma-international.org/article/a-review-of-literature-about-models-and-factors-of-productivity-in-the-software-

factory/193592

Environmental Informatics for Sustainable Development
Carlos Granelland Sven Schade (2015). Encyclopedia of Information Science and Technology, Third Edition

(pp. 2942-2954).

www.irma-international.org/chapter/environmental-informatics-for-sustainable-development/112717

Rural Intelligent Public Transportation System Design: Applying the Design for Re-Engineering of

Transportation eCommerce System in Iran
Leila Esmaeiliand Seyyed AliReza Hashemi G. (2015). International Journal of Information Technologies and

Systems Approach (pp. 1-27).

www.irma-international.org/article/rural-intelligent-public-transportation-system-design/125626

Distributed Autonomous Control Architecture for Intelligent Mobile Robot Systems
Gen'ichi Yasuda (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 6611-6620).

www.irma-international.org/chapter/distributed-autonomous-control-architecture-for-intelligent-mobile-robot-systems/113122

High-Level Features for Image Indexing and Retrieval
Gianluigi Ciocca, Raimondo Schettini, Claudio Cusanoand Simone Santini (2015). Encyclopedia of Information

Science and Technology, Third Edition (pp. 5916-5925).

www.irma-international.org/chapter/high-level-features-for-image-indexing-and-retrieval/113049

http://www.igi-global.com/proceeding-paper/optimal-query-execution-plan-database/33155
http://www.igi-global.com/proceeding-paper/optimal-query-execution-plan-database/33155
http://www.irma-international.org/article/a-review-of-literature-about-models-and-factors-of-productivity-in-the-software-factory/193592
http://www.irma-international.org/article/a-review-of-literature-about-models-and-factors-of-productivity-in-the-software-factory/193592
http://www.irma-international.org/chapter/environmental-informatics-for-sustainable-development/112717
http://www.irma-international.org/article/rural-intelligent-public-transportation-system-design/125626
http://www.irma-international.org/chapter/distributed-autonomous-control-architecture-for-intelligent-mobile-robot-systems/113122
http://www.irma-international.org/chapter/high-level-features-for-image-indexing-and-retrieval/113049

