
568 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Temporal Categorization for
Data Organization

Behrooz Seyed-Abbass, University of North Florida, 4567 St. Johns Bluff Rd S, Jacksonville, FL 32224, USA; E-mail: abbassi@unf.edu

Patrick O. Crews, University of North Florida, 4567 St. Johns Bluff Rd S, Jacksonville, FL 32224, USA; E-mail: gleebix@gmail.com

AbsTrACT
Temporal databases are designed to handle records that are time-oriented. While
the additional dimension produces data that is rich in meaning, capturing this
history results in large volumes of data that are rarely used. Previous research
has found that the additional data can impair system performance when at-
tempting to use temporal databases as operational systems. This paper presents
work done in an area that the authors have termed, temporal categorization,
which involves a method of data organization that groups records according to
their unique temporal semantics. The initial testing on temporal categorization
indicates the potential to effectively improve system performance as related to
time-oriented data.

Keywords: Temporal Databases, Data Organization, Temporal Categorization,
Database Performance

1. InTrODuCTIOn
While there are many ways of associating time with a fact, most temporal research
only considers two time dimensions, valid times and transaction times, to be
significant [1]. Valid times capture the history of a real-world object. Systems
that handle this dimension of time are known as historical databases. Transac-

tion times capture the history of a fact within the database itself and are handled
by rollback databases [2]. Previous research has shown valid and transaction
times to be orthogonal [3], but it has also been acknowledged that both of these
dimensions are necessary to provide complete temporal functionality. Complete
temporal systems are known as bitemporal databases due to their use of both
time dimensions [4]. The following example illustrates a fictional, bitemporal
employee database.

A company hires a new employee named Bob. He begins work on 1/1/2000 as
an Engineer and is entered into the system on 12/30/1999, but is mistakenly listed
as a Managing Engineer. This mistake is caught and corrected on 1/5/2000. Six
months after being hired, Bob is promoted to the rank of Senior Engineer. Finally,
Bob will be automatically promoted to the rank of Supervising Engineer one year
after becoming a Senior Engineer.

Table 1 demonstrates how this data would be captured in a bitemporal database.
Part A is the initial state of the system. Part B shows the table after Bob’s title has
been corrected. There are now two records in the system, the erroneous record
that has been retired and the corrected record that is now active. Part C is the
system after Bob’s promotion to Senior Engineer. The Bob/Engineer record that
was active in Part B has been retired and an updated version with a definitive
Valid_To date inserted into the system. The predictive record of Bob’s promotion
to Supervising Engineer has also been inserted. It has the same Trans_From time

Part A

Emp_name Title Valid_From Valid_To Trans_From Trans_To

Bob Managing Engineer 1/1/2000 12/31/9999 12/30/1999 12/31/9999

Part B

Emp_name Title Valid_From Valid_To Trans_From Trans_To

Bob Managing Engineer 1/1/2000 12/31/9999 12/30/1999 1/4/2000
Bob Engineer 1/1/2000 12/31/9999 1/5/2000 12/31/9999

Part C

Emp_name Title Valid_From Valid_To Trans_From Trans_To

Bob Managing Engineer 1/1/2000 12/31/9999 12/30/1999 1/4/2000
Bob Engineer 1/1/2000 12/31/9999 1/5/2000 6/30/2000
Bob Engineer 1/1/2000 6/30/2000 6/30/2000 12/31/9999

Bob Senior Engineer 7/1/2000 6/30/2001 7/1/2000 12/31/9999

Bob Supervising Engineer 7/1/2001 12/31/9999 7/1/2000 12/31/9999

Table 1. Bitemporal employee database

Managing Worldwide Operations & Communications with Information Technology 569

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

as the Bob/Senior Engineer record and both are considered active in the database
even though the predictive record has not yet become valid.

The use of bitemporal data clearly adds semantic depth. A user is able to track when
a record was entered into the system and when a record was updated or retired,
as well as the history of the data in relation to the real world. Unfortunately, this
depth comes at a price. The results of the large number of stored records have
been shown to negatively impact data retrieval and insertions [5][6][7]. This is
particularly true when the database user wishes to focus on records that are cur-
rently true in both the real world and the database.

Preceding approaches for dealing with the large number of stored records range
from the use of external storage to the implementation of high-performance indexes.
One of the first solutions identified the impact of mingling active and retired data
in a single system, which is comprised of a two-level store to segregate active
and retired data [5]. However, the work did not extend to bitemporal systems
or to more complicated queries. Another approach focused on using external
storage for retired data [8]. While this does allow for the maintenance of active
and retired data, it does not permit queries against all data within a system and
thus severely limits bitemporal functionality. The use of specialized temporal
indexes has also been explored [6]. These high-performance data structures are
tailored to the challenges of bitemporal systems, but they also require kernel level
changes to the database and are unlikely to be used until they are incorporated
into commercial database management systems.

This paper describes a proposed extension to the two-level store where the records
are physically separated for categorization according to their temporal semantics
by transaction time (active versus retired), valid time (past, present, and future),
or a combination of both (sorting active records by valid time and keeping retired
records separate from the active ones). The next two sections present an overview
of the proposed temporal categorization and considerations related to the database
and query processing requirements. Section 4 discusses the initial implementation
findings followed by conclusions and recommendations for future work.

2. TEmpOrAl CATEgOrIzATIOn
Adding one or more dimensions of time to a database results in increased time
for query processing [5][6][7]. This can be attributed to several factors, includ-
ing the enforcement of temporal constraints and the additional volume of records
produced by maintaining historical information in the database [9]. This research
work proposes a method, referred to as temporal categorization, of organizing
temporal data to alleviate the query processing issues resulting from numerous
records. In temporal categorization, the records in a table are physically separated
and grouped according to their temporal semantics. The technique involves the
creation of separate tables (or storage spaces) for the temporal categories of active
and retired in transaction time and valid time.

2.1 Transaction Time
Transaction times are the history of a record within the database. The time values
define when a record was entered into the database and when the system stopped
regarding it as being true. Therefore, only two semantic categories are defined
by transaction times, records that are active and records that are retired. For ex-
ample, the Employee from Table 1 would be separated into Employee_Active and
Employee_Retired. The separation of the records is illustrated in Figure 1 A.

All records are considered true when they are first inserted into the system. This
status changes only when a record is updated or deleted. In a transaction time
system, a delete operation does not physically remove data from the system.
Instead, it is logically deleted [2]. This means that the data remains within the
system, but it is marked as inactive and no longer true. The system marks retired
data by having a Trans_To value that is less than the current time. Updating a
record results in its original form being retired while the newer version of the data
becomes what is considered active by the database. An update can be considered
to be a combination of a delete transaction and an insert transaction.

2.2 Valid Time
Valid time describes when a fact was true in the real world and creates three pos-
sible categories for a record. It was true in the past, it is true in the present, or it
will be true in the future [2]. Categorizing records by these semantics is more
complicated than using transaction times. This is due to the possibility of present
and future records changing their categories. Present records may cease to be
true and be moved to the past category. Future records may become true and be
moved into the present category.

Figure 1 B presents the categorization of records according to valid times. The
records are separated into past, present and future groups. While one cannot truly
predict what the future state of an object will be, there are many instances where
it is useful to store the predicted state of an object. The inclusion of predictive
records is not a requirement for a valid time database, but they do represent a
semantic possibility of this time dimension [10]. Therefore, they are included in
the proposed valid time categorization.

What makes the valid time changes so challenging is the fact that these recat-
egorizations are not due to user (or system) action alone. They can also result
from the passage of time in the real world. The present is always moving and a
record that is valid now might not be valid after a few minutes. A database that
employed this scheme would need to regularly check future and present records
to see if they require a change in category in addition to monitoring the effects
of any user updates. There is also the possibility of not having enough records
to justify the overhead of categorization. The use of this type of categorization
would be decided by how many objects were modeled in the database, how much
history (or future) each object had, and how many states were allowed for an
object at any point in time.

Figure 1. Temporal categorization

Employee

Employee_Future

Employee_Present

Employee_Past

Employee_Retired

EmployeeEmployee_Active Employee_Retired

Employee

Employee_Past

Employee_Present

Employee_Future

A
Transaction

Time

B
Valid
Time

C
Bitemporal

Data

570 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

2.3 bitemporal Categorization
Figure 1 C presents a possible organization for bitemporal categorization. All
active records would be categorized according to their valid time semantics (past,
present, or future) and would keep any retired records in a separate group. Further
categorization of a bitemporal table’s retired records was considered, but it was
decided that this might be ineffectual because many queries against a particular
state of the database (other than current active data) would fall outside of easily
defined temporal categories. Trying to presort the data for every possible temporal
query would not be constructive.

3. COnsIDErATIOns FOr CATEgOrIzATIOn
Categorization of temporal data has the potential to improve database performance
as related to query processing time and to the complexity of temporal queries.
The records in a bitemporal database system throughout time will change by
update operations to retired and active records. Over time, the database collects
a significant volume of retired records, making the overhead of the temporal cat-
egorization process worthwhile. Several possibilities for handling the time-based
update and query retrieval have been contemplated.

3.1 Database Categorization
One possibility would be to poll the present and future records at the time of a
user query similar to the standard SQL column, shown in Table 2. However,
this could severely impact query performance because the system would have
to check all of the records for the categorization condition based on the user=s
request, particularly when the table grows with retired and valid record over a
period of time.

A second possibility would be to maintain the time value of the next shift in
categories, such as the earliest Valid_To time in the present group or the earliest
Valid_From time in the future group. The system could then reclassify the affected
records at the proper time. Unfortunately, any updates, insertions, or deletes
would require the system to update its list of update times since these actions
could render it inaccurate.

Another option would be for the database to poll the present and future groups
at a given time interval, recategorizing as necessary. This approach is highly
dependent on the granularity (or level of precision) of the valid time values. If
the valid times are only precise to the day, the database could check the tables at
the start of each new day. If the valid times were of microsecond granularity, the
database would be doing nothing but polling the tables.

3.2 Query Categorization
In practice, if one table is used for holding active and retired data to provide a
simple and more optimized query processing, a flag field can be set to mark the

retired records. The flag field may be hidden from the users. It is activated and
set to retired during the Update and Delete operations according to the semantics.
The SQL data manipulation commands would use the flag to access only retired or
active records in an optimized approach. To retrieve all the retired records from
Employee table as in Table 1 C, a user may execute the following command.

SELECT * FROM Employee WHERE CATEGORY = RETIRED;

CATEGORY may use the options of [RETIRED | ACTIVE] for transaction time
to select the correct category of the records from the table.

The active records in the table may be extended into past, present or future catego-
ries. In this case, a more comprehensive flag and temporal semantic comparison
methodology can be used and the flag can be set to refer to different category
domain of past, present or future. To access a particular category domain, the
temporal SQL command uses the reserve word CATEGORY with any of the
[PAST | PRESENT - CURRENT | FUTURE]. A command could be used to
select particular domain as well as search for a conditional semantic value related
to date or any other simple or compound condition. Table 2 shows several SQL
categorization examples using the fictional Employee table in Table 1 with the
query and the SQL that would produce the desired results in a standard system as
well as a theoretical database using the proposed temporal categorization.

4. InITIAl ImplEmEnTATIOn OF TEmpOrAl CATEgO-
rIzATIOn
Physically separating current and historical records to improve system performance
across a broad range of temporal queries would be a result of having multiple
smaller tables for the system to query rather than one large table. Additionally,
having the records separated by temporal semantics eliminates the need for
evaluating each record=s timestamps in certain cases. Consider a system where
records are categorized by transaction times. If a user wished to search only ac-
tive records with a Trans_To time of 12/31/9999, the database would not need to
test the Trans_To values of each record. It could just run the query against the
active data set, ignoring the retired data completely.

To test the possible benefits of this categorization methodology, a simple experi-
mental prototype system with separate tables to support retired and active records
was constructed. As records were retired via Update or Delete actions, they were
moved into the retired table. The data in these experiments consisted of a single
key value coupled with valid and transaction times that tracked an object=s status
through a period of time. While this cannot be considered representative of all
bitemporal data, it does represent one of the more common applications of temporal
databases. Each Insert represents a new state and requires an Update or Delete

Table 2. Comparison of queries across temporal systems

results sQl (standard) sQl (categorized)
All data in the table SELECT * FROM Employee SELECT * FROM Employee

All active data in the table SELECT * FROM Employee WHERE Trans_To
= ‘12/31/9999’

SELECT * FROM Employee WHERE CATEGORY
= ACTIVE

All current, active data in the
table

SELECT * FROM Employee WHERE Trans_To
= ‘12/31/9999’ AND Valid_From < Current Time
AND Valid_To > Current Time

SELECT * FROM Employee WHERE CATEGORY
= CURRENT AND ACTIVE

All past, active data in the table
(interchangeable with future)

Select * FROM Employee WHERE Trans_To =
‘12/31/9999’ AND Valid_To < Current Time

SELECT * FROM Employee WHERE CATEGORY
= PAST AND ACTIVE

All active data that was valid
within a specified time period
(valid for any part of interval)

Select * FROM Employee WHERE Trans_To
= ‘12/31/9999’ AND Valid_From < Start Time
AND Valid_To > End Time

SELECT * FROM Employee WHERE CATEGORY
= ACTIVE AND Valid_From < Start Time AND
Valid_To > End Time

All data that was valid at a
particular point in time for the
database

Select * FROM Employee WHERE Trans_From
< Time AND Trans_To > Time AND Valid_From
< Time AND Valid_To > Time

Select * FROM Employee WHERE Trans_From <
Time AND Trans_To > Time AND Valid_From < Time
AND Valid_To > Time

Managing Worldwide Operations & Communications with Information Technology 571

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

of the current one. The design choice was made to monitor temporal constraint
performance as well as query times.

To allow greater flexibility in searching the records, the actual values were also
tested in addition to the keyword indicator, such as active or retired, as shown in
Figure 1 and Table 2. This provided the capability to test records that were retired
after a given date rather than only retired records. The system determines which
tables to run against by examining the Trans_To value in the query. If the value
matches the placeholder to signify activity, only the active table is searched. If the
Trans_To value is something other than that placeholder, it means the record has
been retired and only the retired table is used. A single evaluation is performed
against the queries Trans_To value, in contrast to the standard system=s need to
compare each record=s data against that of the query.

An experimental prototype system was designed to handle the transaction time
with active and retired data in combined and separate tables. The performance
analysis was focused on transaction time categorization due to its comparative
simplicity of result and ease of implementation. Additionally, a combination of
Insert/Update/Delete operations were implemented. These operators were built
to test the insertion of new versions of real world data and the act of a record’s
current state becoming real world inactive. A control system was also imple-
mented as the standard system. This system contained all of the functionality of
the experimental system minus the categorization. Both systems were built from
scratch in an effort to ensure more effective comparisons between systems. They
were implemented using the Python programming language.

A collection of queries was designed and run against the standard and experimen-
tal systems. The performance data for the queries were collected and averaged.
These queries were designed with various business rules and settings for different
scenarios that are summarized in following cases. For each case, the queries for
the data status involved three levels: all, active after a particular date and active
between specified dates.

Case 1: Database records with active status
Case 2: Database records with active status after certain date
Case 3: Database records with active status between date intervals
Case 4: Database records with active and retired status

The performance and results of these queries for different numbers of records
were collected and tabulated for both the standard and experimental system, and
then averaged. The averaged comparison diagram is shown in Figure 2. It was
observed that the categorized experimental system outperformed the standard
system in every query category. Figure 2 shows a sample of the average system
performance for all different queries used in cases 1-4. The data clearly shows
the categorized system’s performance to be significantly faster.

Figure 3 shows the insertion times required for various numbers of records in
both the standard and experimental system records. The experimental system
shows improved performance. It is suspected that this is due to not needing to
test whether or not a record is active or retired before testing for any temporal
constraints on a table.

Finally, in terms of data storage, there was a constant difference between the
systems. The experimental systems showed a difference of approximately 30 ad-

ditional bytes for any number of records, which appeared to be related entirely to
the additional data structure used for holding retired data. The number of records
stored did not affect the size difference.

5. COnClusIOns AnD FuTurE WOrK
This paper has presented an overview of the authors’ current research work on
temporal categorization, which was developed as a proposed solution to the prob-
lem of how to deal with the large volumes of data that are produced by adding
one or more time dimensions to a database. While alternate methods have been
suggested, these have typically involved using secondary storage and do not allow
for immediate access to the data. By physically separating records according to
their temporal semantics, temporal categorization may produce improved query
performance due to the smaller volumes of data that must be searched as well as
the reduced number of comparisons that must be made in order to find the desired
data. This is especially true when dealing with those records that are active and
defining the state of objects in the present.

The initial experimental system demonstrated promising performance gains in terms
of data retrieval and insertion operations. Even those queries that were expected
to show reduced performance were completed more quickly for the categorized
system. Additionally, the improved query run times came at the cost of constant
storage overhead, which the authors view as a minor cost in comparison to the
benefits. In light of these initial findings, temporal categorization can be seen
as a viable possibility for temporal data organization. The technique promises
improved query processing times and faster data insertion / update transactions
for a minor storage cost. The next steps will be to implement this technique in a
more robust database system and to explore additional prototypes for temporal
semantic categorization.

Future work will consist of evaluating the feasibility and performance of the
temporal database categorizations for storage space requirements, insertion and
update times, and data retrieval operations for different combinations of temporal
criteria. The authors are also interested in seeing how this technique would com-
pare to temporal indexing as a performance enhancement technique. Additionally,
it would be worthwhile to examine a wide variety of temporal data sets to better
understand how real-world users are storing time-associated records. Finally,
the question of valid time categorization must be addressed. This topic will be
examined in terms of implementation performance as well as which patterns of
database usage will be best suited for these techniques.

6. rEFErEnCEs
[1] Christian S. Jensen and Richard Thomas Snodgrass, “Temporal Data Manage-

ment,” IEEE Transactions on Knowledge and Data Engineering, Volume 11,
Issue 1 (January 1999), pp. 36-44.

[2] Christian S. Jensen, “Introduction to Temporal Database Research,” Temporal
Database Management dr.techn.thesis (April 2000).

Figure 2. Average query performance comparison

Figure 3. Comparison of record insertion times

Average Query Processing Time vs. Number of Records

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

-20000 0 20000 40000 60000 80000 100000 120000

Number of Records

Ti
m

e(
s) Standard

Experimental

Insertion Times

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-20000 0 20000 40000 60000 80000 100000 120000

Number of existing records

Ti
m

e(
s) Standard

Experimental

572 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

[3] Christian S. Jensen, Michael D. Soo, and Richard Thomas Snodgrass, “Unifying
Temporal Data Models via a Conceptual One,” Information Systems, Volume
19, Issue 7 (October 1994), pp 513-547.

[4] Niki Pissinou, Richard Thomas Snodgrass, Ramez Elmasri, Inderpal S.
Mumick, Tamer Özsu, Barbara Pernici, Arie Segev, Babis Theodoulidis,
and Umeshwar Dayal, “Towards an Infrastructure for Temporal Databases:
Report of an Invitational ARPA/NSF Workshop,” ACM SIGMOD Record,
Volume 23, Issue 1, (March 1994), pp 35-51.

[5] Ilsoo Ahn and Richard Snodgrass, “Performance Evaluation of a Temporal
Database Management System,” ACM SIGMOD Record, Volume 15, Issue
2 (June 1986), pp 96-107.

[6] Rasa Bliujute, Christian S. Jensen, Simonas Altenis, and Giedrius Slivinskas,
“Light-Weight Indexing of General Bitemporal Data,” Proceedings of the 12th

International Conference on Scientific and Statistical Database Management,
(July 2000), pp. 125-138.

[7] Anil Kumar, Vassilis J. Tsotras, and Christos Faloutsos, “Designing Access
Methods for Bitemporal Databases,” IEEE Transactions on Knowledge and
Data Engineering, Volume 10, Issue 1, (January 1998), pp 1-20.

[8] Betty Salzberg and Vassilis J. Tsotras, “Comparison of Access Methods for
Time-evolving Data,” ACM Computing Survey, Volume 31, Issue 2 (June
1999), pp. 158-221.

[9] C. J. Date, Hugh Darwen, and Nikos Lorentzos, Temporal Data and the
Relational Model, Morgan Kaufmann, San Francisco, 2002.

[10] James Clifford, Curtis Dyreson, Tomás Isakowitz, Christian S. Jensen, and
Richard Thomas Snodgrass, “On the Semantics of “Now” in Databases,”
ACM Transactions on Database Systems, Volume 22, Issue 2, (June 1997),
pp 171-214.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/temporal-categorization-data-organization/33138

Related Content

Digital Object Memory
Alexander Kröner, Jens Haupertand Ralph Barthel (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 7605-7613).

www.irma-international.org/chapter/digital-object-memory/112463

Prediction of Ultimate Bearing Capacity of Oil and Gas Wellbore Based on Multi-Modal Data

Analysis in the Context of Machine Learning
Qiang Li (2023). International Journal of Information Technologies and Systems Approach (pp. 1-13).

www.irma-international.org/article/prediction-of-ultimate-bearing-capacity-of-oil-and-gas-wellbore-based-on-multi-modal-data-

analysis-in-the-context-of-machine-learning/323195

An Exploratory Study of Metrics Used to Measure the Impacts of Social Media Utilization on

Business Performance
Celeste See-Pui Ng (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 2816-

2826).

www.irma-international.org/chapter/an-exploratory-study-of-metrics-used-to-measure-the-impacts-of-social-media-utilization-

on-business-performance/112701

E-Business Value Creation, Platforms, and Trends
Tobias Kollmannand Jan Ely (2015). Encyclopedia of Information Science and Technology, Third Edition (pp.

2309-2318).

www.irma-international.org/chapter/e-business-value-creation-platforms-and-trends/112644

Software Engineering and the Systems Approach: A Conversation with Barry Boehm
Jo Ann Lane, Doncho Petkovand Manuel Mora (2008). International Journal of Information Technologies and

Systems Approach (pp. 99-103).

www.irma-international.org/article/software-engineering-systems-approach/2542

http://www.igi-global.com/proceeding-paper/temporal-categorization-data-organization/33138
http://www.igi-global.com/proceeding-paper/temporal-categorization-data-organization/33138
http://www.irma-international.org/chapter/digital-object-memory/112463
http://www.irma-international.org/article/prediction-of-ultimate-bearing-capacity-of-oil-and-gas-wellbore-based-on-multi-modal-data-analysis-in-the-context-of-machine-learning/323195
http://www.irma-international.org/article/prediction-of-ultimate-bearing-capacity-of-oil-and-gas-wellbore-based-on-multi-modal-data-analysis-in-the-context-of-machine-learning/323195
http://www.irma-international.org/chapter/an-exploratory-study-of-metrics-used-to-measure-the-impacts-of-social-media-utilization-on-business-performance/112701
http://www.irma-international.org/chapter/an-exploratory-study-of-metrics-used-to-measure-the-impacts-of-social-media-utilization-on-business-performance/112701
http://www.irma-international.org/chapter/e-business-value-creation-platforms-and-trends/112644
http://www.irma-international.org/article/software-engineering-systems-approach/2542

