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AbsTrACT
Temporal databases are designed to handle records that are time-oriented.  While 
the additional dimension produces data that is rich in meaning, capturing this 
history results in large volumes of data that are rarely used.  Previous research 
has found that the additional data can impair system performance when at-
tempting to use temporal databases as operational systems.  This paper presents 
work done in an area that the authors have termed, temporal categorization, 
which involves a method of data organization that groups records according to 
their unique temporal semantics.  The initial testing on temporal categorization 
indicates the potential to effectively improve system performance as related to 
time-oriented data.
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1. InTrODuCTIOn 
While there are many ways of associating time with a fact, most temporal research 
only considers two time dimensions, valid times and transaction times, to be 
significant [1].   Valid times capture the history of a real-world object.  Systems 
that handle this dimension of time are known as historical databases.  Transac-

tion times capture the history of a fact within the database itself and are handled 
by rollback databases [2].  Previous research has shown valid and transaction 
times to be orthogonal [3], but it has also been acknowledged that both of these 
dimensions are necessary to provide complete temporal functionality.  Complete 
temporal systems are known as bitemporal databases due to their use of both 
time dimensions [4].  The following example illustrates a fictional, bitemporal 
employee database.

A company hires a new employee named Bob.  He begins work on 1/1/2000 as 
an Engineer and is entered into the system on 12/30/1999, but is mistakenly listed 
as a Managing Engineer.  This mistake is caught and corrected on 1/5/2000.  Six 
months after being hired, Bob is promoted to the rank of Senior Engineer.  Finally, 
Bob will be automatically promoted to the rank of Supervising Engineer one year 
after becoming a Senior Engineer.  

Table 1 demonstrates how this data would be captured in a bitemporal database.  
Part A is the initial state of the system.  Part B shows the table after Bob’s title has 
been corrected.  There are now two records in the system, the erroneous record 
that has been retired and the corrected record that is now active.  Part C is the 
system after Bob’s promotion to Senior Engineer.  The Bob/Engineer record that 
was active in Part B has been retired and an updated version with a definitive 
Valid_To date inserted into the system.  The predictive record of Bob’s promotion 
to Supervising Engineer has also been inserted.  It has the same Trans_From time 

Part A

Emp_name Title Valid_From Valid_To Trans_From Trans_To

Bob Managing Engineer 1/1/2000 12/31/9999 12/30/1999 12/31/9999
      
Part B 

Emp_name Title Valid_From Valid_To Trans_From Trans_To

Bob Managing Engineer 1/1/2000 12/31/9999 12/30/1999 1/4/2000
Bob  Engineer 1/1/2000 12/31/9999 1/5/2000 12/31/9999
      
Part C

Emp_name Title Valid_From Valid_To Trans_From Trans_To

Bob Managing Engineer 1/1/2000 12/31/9999 12/30/1999 1/4/2000
Bob Engineer 1/1/2000 12/31/9999 1/5/2000 6/30/2000
Bob Engineer 1/1/2000 6/30/2000 6/30/2000 12/31/9999

Bob Senior Engineer 7/1/2000 6/30/2001 7/1/2000 12/31/9999

Bob Supervising Engineer 7/1/2001 12/31/9999 7/1/2000 12/31/9999

Table 1. Bitemporal employee database
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as the Bob/Senior Engineer record and both are considered active in the database 
even though the predictive record has not yet become valid.

The use of bitemporal data clearly adds semantic depth.  A user is able to track when 
a record was entered into the system and when a record was updated or retired, 
as well as the history of the data in relation to the real world.  Unfortunately, this 
depth comes at a price.  The results of the large number of stored records have 
been shown to negatively impact data retrieval and insertions [5][6][7].  This is 
particularly true when the database user wishes to focus on records that are cur-
rently true in both the real world and the database.

Preceding approaches for dealing with the large number of stored records range 
from the use of external storage to the implementation of high-performance indexes.  
One of the first solutions identified the impact of mingling active and retired data 
in a single system, which is comprised of a two-level store to segregate active 
and retired data  [5].  However, the work did not extend to bitemporal systems 
or to more complicated queries.  Another approach focused on using external 
storage for retired data [8].  While this does allow for the maintenance of active 
and retired data, it does not permit queries against all data within a system and 
thus severely limits bitemporal functionality.  The use of specialized temporal 
indexes has also been explored [6].   These high-performance data structures are 
tailored to the challenges of bitemporal systems, but they also require kernel level 
changes to the database and are unlikely to be used until they are incorporated 
into commercial database management systems.

This paper describes a proposed extension to the two-level store where the records 
are physically separated for categorization according to their temporal semantics 
by transaction time (active versus retired), valid time (past, present, and future), 
or a combination of both (sorting active records by valid time and keeping retired 
records separate from the active ones).  The next two sections present an overview 
of the proposed temporal categorization and considerations related to the database 
and query processing requirements.  Section 4 discusses the initial implementation 
findings followed by conclusions and recommendations for future work.

2. TEmpOrAl CATEgOrIzATIOn
Adding one or more dimensions of time to a database results in increased time 
for query processing [5][6][7].  This can be attributed to several factors, includ-
ing the enforcement of temporal constraints and the additional volume of records 
produced by maintaining historical information in the database  [9].  This research 
work proposes a method, referred to as temporal categorization, of organizing 
temporal data to alleviate the query processing issues resulting from numerous 
records.  In temporal categorization, the records in a table are physically separated 
and grouped according to their temporal semantics.  The technique involves the 
creation of separate tables (or storage spaces) for the temporal categories of active 
and retired in transaction time and valid time.

2.1 Transaction Time 
Transaction times are the history of a record within the database.  The time values 
define when a record was entered into the database and when the system stopped 
regarding it as being true.  Therefore, only two semantic categories are defined 
by transaction times, records that are active and records that are retired.  For ex-
ample, the Employee from Table 1 would be separated into Employee_Active and 
Employee_Retired.  The separation of the records is illustrated in Figure 1 A.

All records are considered true when they are first inserted into the system.  This 
status changes only when a record is updated or deleted.  In a transaction time 
system, a delete operation does not physically remove data from the system.  
Instead, it is logically deleted [2].  This means that the data remains within the 
system, but it is marked as inactive and no longer true.  The system marks retired 
data by having a Trans_To value that is less than the current time.  Updating a 
record results in its original form being retired while the newer version of the data 
becomes what is considered active by the database.  An update can be considered 
to be a combination of a delete transaction and an insert transaction.

2.2 Valid Time
Valid time describes when a fact was true in the real world and creates three pos-
sible categories for a record.  It was true in the past, it is true in the present, or it 
will be true in the future [2].  Categorizing records by these semantics is more 
complicated than using transaction times.  This is due to the possibility of present 
and future records changing their categories.  Present records may cease to be 
true and be moved to the past category.  Future records may become true and be 
moved into the present category.

Figure 1 B presents the categorization of records according to valid times.  The 
records are separated into past, present and future groups.  While one cannot truly 
predict what the future state of an object will be, there are many instances where 
it is useful to store the predicted state of an object.  The inclusion of predictive 
records is not a requirement for a valid time database, but they do represent a 
semantic possibility of this time dimension [10].  Therefore, they are included in 
the proposed valid time categorization.

What makes the valid time changes so challenging is the fact that these recat-
egorizations are not due to user (or system) action alone.  They can also result 
from the passage of time in the real world.  The present is always moving and a 
record that is valid now might not be valid after a few minutes.  A database that 
employed this scheme would need to regularly check future and present records 
to see if they require a change in category in addition to monitoring the effects 
of any user updates.  There is also the possibility of not having enough records 
to justify the overhead of categorization.  The use of this type of categorization 
would be decided by how many objects were modeled in the database, how much 
history (or future) each object had, and how many states were allowed for an 
object at any point in time.

Figure 1. Temporal categorization
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2.3 bitemporal Categorization
Figure 1 C presents a possible organization for bitemporal categorization.  All 
active records would be categorized according to their valid time semantics (past, 
present, or future) and would keep any retired records in a separate group.  Further 
categorization of a bitemporal table’s retired records was considered, but it was 
decided that this might be ineffectual because many queries against a particular 
state of the database (other than current active data) would fall outside of easily 
defined temporal categories.  Trying to presort the data for every possible temporal 
query would not be constructive.

3. COnsIDErATIOns FOr CATEgOrIzATIOn 
Categorization of temporal data has the potential to improve database performance 
as related to query processing time and to the complexity of temporal queries.  
The records in a bitemporal database system throughout time will change by 
update operations to retired and active records.  Over time, the database collects 
a significant volume of retired records, making the overhead of the temporal cat-
egorization process worthwhile.   Several possibilities for handling the time-based 
update and query retrieval have been contemplated.

3.1 Database Categorization
One possibility would be to poll the present and future records at the time of a 
user query similar to the standard SQL column, shown in Table 2.   However, 
this could severely impact query performance because the system would have 
to check all of the records for the categorization condition based on the user=s 
request, particularly when the table grows with retired and valid record over a 
period of time.  

A second possibility would be to maintain the time value of the next shift in 
categories, such as the earliest Valid_To time in the present group or the earliest 
Valid_From time in the future group. The system could then reclassify the affected 
records at the proper time.  Unfortunately, any updates, insertions, or deletes 
would require the system to update its list of update times since these actions 
could render it inaccurate.  

Another option would be for the database to poll the present and future groups 
at a given time interval, recategorizing as necessary.  This approach is highly 
dependent on the granularity (or level of precision) of the valid time values.  If 
the valid times are only precise to the day, the database could check the tables at 
the start of each new day.  If the valid times were of microsecond granularity, the 
database would be doing nothing but polling the tables.  

3.2 Query Categorization
In practice, if one table is used for holding active and retired data to provide a 
simple and more optimized query processing, a flag field can be set to mark the 

retired records. The flag field may be hidden from the users.  It is activated and 
set to retired during the Update and Delete operations according to the semantics.  
The SQL data manipulation commands would use the flag to access only retired or 
active records in an optimized approach.  To retrieve all the retired records from 
Employee table as in Table 1 C, a user may execute the following command. 

SELECT * FROM Employee WHERE CATEGORY = RETIRED;

CATEGORY may use the options of [RETIRED | ACTIVE] for transaction time 
to select the correct category of the records from the table.  

The active records in the table may be extended into past, present or future catego-
ries.  In this case, a more comprehensive flag and temporal semantic comparison 
methodology can be used and the flag can be set to refer to different category 
domain of past, present or future.  To access a particular category domain, the 
temporal SQL command uses the reserve word CATEGORY with any of the 
[PAST | PRESENT - CURRENT | FUTURE].  A command could be used to 
select particular domain as well as search for a conditional semantic value related 
to date or any other simple or compound condition. Table 2 shows several SQL 
categorization examples using the fictional Employee table in Table 1 with the 
query and the SQL that would produce the desired results in a standard system as 
well as a theoretical database using the proposed temporal categorization.

4. InITIAl ImplEmEnTATIOn OF TEmpOrAl CATEgO-
rIzATIOn
Physically separating current and historical records to improve system performance 
across a broad range of temporal queries would be a result of having multiple 
smaller tables for the system to query rather than one large table.  Additionally, 
having the records separated by temporal semantics eliminates the need for 
evaluating each record=s timestamps in certain cases.  Consider a system where 
records are categorized by transaction times.  If a user wished to search only ac-
tive records with a Trans_To time of 12/31/9999, the database would not need to 
test the Trans_To values of each record.  It could just run the query against the 
active data set, ignoring the retired data completely. 

To test the possible benefits of this categorization methodology, a simple experi-
mental prototype system with separate tables to support retired and active records 
was constructed.  As records were retired via Update or Delete actions, they were 
moved into the retired table. The data in these experiments consisted of a single 
key value coupled with valid and transaction times that tracked an object=s status 
through a period of time.  While this cannot be considered representative of all 
bitemporal data, it does represent one of the more common applications of temporal 
databases.  Each Insert represents a new state and requires an Update or Delete 

Table 2. Comparison of queries across temporal systems

results sQl (standard) sQl (categorized)
All data in the table SELECT * FROM Employee SELECT * FROM Employee

All active data in the table SELECT * FROM Employee WHERE Trans_To 
= ‘12/31/9999’

SELECT * FROM Employee WHERE CATEGORY 
= ACTIVE

All current, active data in the 
table

SELECT * FROM Employee WHERE Trans_To 
= ‘12/31/9999’ AND Valid_From < Current Time 
AND Valid_To > Current Time

SELECT *  FROM Employee WHERE CATEGORY 
= CURRENT AND ACTIVE

All past, active data in the table 
(interchangeable with future)

Select * FROM Employee WHERE Trans_To = 
‘12/31/9999’ AND Valid_To < Current Time

SELECT *  FROM Employee WHERE CATEGORY 
= PAST  AND ACTIVE

All active data that was valid 
within a specified time period 
(valid for any part of interval)

Select * FROM Employee WHERE Trans_To 
= ‘12/31/9999’ AND Valid_From < Start Time 
AND Valid_To > End Time

SELECT *  FROM Employee WHERE CATEGORY 
= ACTIVE AND Valid_From < Start Time AND 
Valid_To > End Time

All data that was valid at a 
particular point in time for the 
database

Select * FROM Employee WHERE Trans_From 
< Time AND Trans_To > Time AND Valid_From 
< Time AND Valid_To > Time 

Select * FROM Employee WHERE Trans_From < 
Time AND Trans_To > Time AND Valid_From < Time 
AND Valid_To > Time 



Managing Worldwide Operations & Communications with Information Technology   571

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

of the current one.  The design choice was made to monitor temporal constraint 
performance as well as query times.

To allow greater flexibility in searching the records, the actual values were also 
tested in addition to the keyword indicator, such as active or retired, as shown in 
Figure 1 and Table 2.  This provided the capability to test records that were retired 
after a given date rather than only retired records.  The system determines which 
tables to run against by examining the Trans_To value in the query.  If the value 
matches the placeholder to signify activity, only the active table is searched.  If the 
Trans_To value is something other than that placeholder, it means the record has 
been retired and only the retired table is used.  A single evaluation is performed 
against the queries Trans_To value, in contrast to the standard system=s need to 
compare each record=s data against that of the query.

An experimental prototype system was designed to handle the transaction time 
with active and retired data in combined and separate tables.  The performance 
analysis was focused on transaction time categorization due to its comparative 
simplicity of result and ease of implementation.  Additionally, a combination of  
Insert/Update/Delete operations were implemented.  These operators were built 
to test the insertion of new versions of real world data and the act of a record’s 
current state becoming real world inactive.   A control system was also imple-
mented as the standard system.  This system contained all of the functionality of 
the experimental system minus the categorization.  Both systems were built from 
scratch in an effort to ensure more effective comparisons between systems.  They 
were implemented using the Python programming language.

A collection of queries was designed and run against the standard and experimen-
tal systems.  The performance data for the queries were collected and averaged.  
These queries were designed with various business rules and settings for different 
scenarios that are summarized in following cases.  For each case, the queries for 
the data status involved three levels:  all, active after a particular date and active 
between specified dates.

Case 1: Database records with active status
Case 2: Database records with active status after certain date
Case 3: Database records with active status between date intervals
Case 4: Database records with active and retired status

The performance and results of these queries for different numbers of records 
were collected and tabulated for both the standard and experimental system, and 
then averaged.   The averaged comparison diagram is shown in Figure 2.  It was 
observed that the categorized experimental system outperformed the standard 
system in every query category.   Figure 2 shows a sample of the average system 
performance for all different queries used in cases 1-4.  The data clearly shows 
the categorized system’s performance to be significantly faster.

Figure 3 shows the insertion times required for various numbers of records in 
both the standard and experimental system records.  The experimental system 
shows improved performance.  It is suspected that this is due to not needing to 
test whether or not a record is active or retired before testing for any temporal 
constraints on a table.

Finally, in terms of data storage, there was a constant difference between the 
systems.  The experimental systems showed a difference of approximately 30 ad-

ditional bytes for any number of records, which appeared to be related entirely to 
the additional data structure used for holding retired data.  The number of records 
stored did not affect the size difference.

5. COnClusIOns AnD FuTurE WOrK
This paper has presented an overview of the authors’ current research work on 
temporal categorization, which was developed as a proposed solution to the prob-
lem of how to deal with the large volumes of data that are produced by adding 
one or more time dimensions to a database.  While alternate methods have been 
suggested, these have typically involved using secondary storage and do not allow 
for immediate access to the data.  By physically separating records according to 
their temporal semantics, temporal categorization may produce improved query 
performance due to the smaller volumes of data that must be searched as well as 
the reduced number of comparisons that must be made in order to find the desired 
data.  This is especially true when dealing with those records that are active and 
defining the state of objects in the present.  

The initial experimental system demonstrated promising performance gains in terms 
of data retrieval and insertion operations.  Even those queries that were expected 
to show reduced performance were completed more quickly for the categorized 
system.  Additionally, the improved query run times came at the cost of constant 
storage overhead, which the authors view as a minor cost in comparison to the 
benefits.  In light of these initial findings, temporal categorization can be seen 
as a viable possibility for temporal data organization.  The technique promises 
improved query processing times and faster data insertion / update transactions 
for a minor storage cost.  The next steps will be to implement this technique in a 
more robust database system and to explore additional prototypes for temporal 
semantic categorization.

Future work will consist of evaluating the feasibility and performance of the 
temporal database categorizations for storage space requirements, insertion and 
update times, and data retrieval operations for different combinations of temporal 
criteria.   The authors are also interested in seeing how this technique would com-
pare to temporal indexing as a performance enhancement technique.  Additionally, 
it would be worthwhile to examine a wide variety of temporal data sets to better 
understand how real-world users are storing time-associated records.  Finally, 
the question of valid time categorization must be addressed.  This topic will be 
examined in terms of implementation performance as well as which patterns of 
database usage will be best suited for these techniques.
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