
458 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Developing Buddy: Towards Greater
Dependability and Maintainability in

Meta-Search
Naresh Kumar Agarwal, National University of Singapore, 3 Science Drive 2, Singapore 117543; E-mail: naresh@comp.nus.edu.sg

Danny C. C. Poo, National University of Singapore, 3 Science Drive 2, Singapore 117543; E-mail: dpoo@comp.nus.edu.sg

Dominick M. T. Leo, National University of Singapore, 3 Science Drive 2, Singapore 117543; E-mail: dominick_leo@comp.nus.edu.sg

ABSTrAcT
Most meta-search engines use web scraping as an ad-hoc method to extract results
from the output display of various search engine sources. However, a search engine
may cease operation, merge with other engines or its display format may change.
A dependable meta-search engine must, thus, adapt to display changes in search
engine sources and be maintainable even by people with low programming skills.
This paper describes the design and development of Buddy, a meta-search engine
that is able to help web users search more effectively into multiple search engine
sources. It allows integration of a new search source with minimum complexity
and programming knowledge, leading to greater dependability and maintain-
ability. Search results are aggregated from multiple sources to remove duplicate
and sponsored links and to give the most relevant results each time. Buddy also
allows query refinement and saving of search results locally in user computers
or remotely in emails.

Keywords: Meta-search engine, Information Retrieval, Web scraping in Java

1. InTroDucTIon
The World Wide Web may be considered the largest database in the world, with
its huge collection of data covering every part of our lives. Each day, each second,
a humongous number of people search the Web for information and data of their
interest, such as news, word documents, research papers, pictures, music and video.
The sole aim of these searchers is to find answers to their queries.

However, they may not be able to find all the best answers in a single search
engine. E.g. searching Google (www.google.com) alone is still considered insuf-
ficient even though it seems to have the largest repository of web pages [1]. This
is because there is very little overlap in the databases of different search engines
[2]. Since the top results ranked by different search engines are very different
from each other, Web searchers potentially miss relevant results by using only
one search engine. Here comes the need and relevance of meta-search engines
that have the underlying philosophy that “having many heads is better than one”
i.e. instead of searching into only one search engine, it may be worthwhile to get
another opinion from other search engines. As searching manually into individual
search engines is time-consuming and inefficient, meta-search engines (see [3]
for a list of meta-search engines) allow searching into various search engines
simultaneously.

1.1 Issues with Meta-Search Engines and Their Development
Unfortunately, meta-search engines today are too ad-laden [4]. They are becoming
“meta-yellow pages” where searchers query paid listings and get advertisements
in their search results. Searchers are forced to sieve through irrelevant sponsored
sites ranked among the search results.

There are two ways in which meta-search engines are able to search into other
search engines: 1) Using the APIs provided by search engines e.g. Google’s
Java-APIs. However, this method is not feasible when searching into many
search engines. To connect to ten search engines that use different APIs, such a

method will require learning how to apply ten different APIs. This will makes the
connection to a search engine’s database a tedious task and it would be difficult
to maintain the system. Moreover, unlike Google, not many search engines are
willing to share their APIs with the public. 2) To overcome this limitation, a web
scraping technique [5] can be used to extract the results from the output display
of various search engines. This allows connecting and extracting data from many
search engine sources without having to learn new APIs.

This leads us to the most important issue, which is the focus of this paper – depend-
ability and maintainability. The output display of search engines may change and
cause extraction of results using web scraping method to fail. New search engines
can emerge anytime in the World Wide Web. Existing search engines may cease
to exist or merge with another engine. A dependable meta-search engine must,
thus, adapt to display changes in search engine sources and be maintainable even
by people with low programming skills.

In this paper, we describe the design and development of Buddy, a meta-search
engine developed at the School of Computing, National University of Singapore
and accessible at http://buddy.redirectme.net

The remainder of the paper is organized as follows. In Section 2, we briefly
describe the features of Buddy that lead to greater maintainability and depend-
ability. Target users and guiding objectives are also discussed. Section 3 discusses
the system design considerations. In Section 4, we see the system architecture of
Buddy. Section 5 highlights the experimental results on evaluating the system.
Section 6 concludes the paper by sharing the lessons learnt and possible future
enhancements.

Let us now look at the Buddy Meta-search Engine.

2. ThE BuDDy META-SEArch EnGInE
Figure 1 shows a snapshot of the Buddy Meta-search Engine. Buddy extracts
results directly from search engines chosen by the user. No paid links are added
into the final merged results. Sponsored links from the source search engines are
actually omitted. The system thus minimizes the occurrence of sponsored links
in search results, while maximizing relevant links.

Buddy has been designed for dependability and maintainability – it can easily
connect or disconnect to/from search engines. At the same time, it can adapt to
display output changes in the search engine sources. In Buddy, adding a new
source search engine does not require learning its APIs. Any changes to the output
display of the source search engines will require minimal modification. The web
scraping technique in Buddy makes use of existing Java’s Regular Expression
and Pattern matching capability [6]. If the output display of source search engines
changes, the system administrator just needs to modify the Regular Expression
that governs the web scraping structure. This means that there is no need to change
the underlying data structures of the system. Maintaining the system will also
require little programming knowledge. There is no need to recode the system or
web scraping methods if changes occur to the source search engines. Modifica-
tions are done in a declarative approach (see Section 3.1).

Managing Worldwide Operations & Communications with Information Technology 459

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Figure 1. Snap-shot of Buddy (accessible at http://buddy.redirectme.net)

Understanding searcher needs is important if we are to attract users to use Buddy.
Besides being able to extract results from search engines, Buddy can also extract
results from sites such as Dictionary.com (www.dictionary.com) to provide spell-
ing suggestions for queries with spelling errors1.

Buddy can extract query refinement suggestions from sites like Ask.com (www.
ask.com) and Yahoo (www.yahoo.com) that provide query refinements together
with the searched results. This shows the flexible web scraping method used in
our proposed system.

Buddy also enables searchers to save their results locally in their computers or to
send their results to their email so that they can access the results in future.

2.1. Target users
Buddy, though a general-purpose meta-search engine, has been developed keep-
ing in mind, the educational needs of students and teachers in Singapore. The
education system in Singapore encourages schools to use materials outside their
textbooks, including project-based learning. Earlier, students used encyclopedias
to gather this extra information. With the technology available today, students
have switched to gathering information from the World Wide Web. Search engines
have thus become useful tools for students to do their learning or to gather data for
their projects. Teachers can also turn to search engines to gather useful teaching
materials. Buddy primarily aims to help such students and teachers in their needs
by providing customizable mechanisms to search from specific sources.

Agarwal and Poo [7] discuss classifying a typical Internet searcher into one of 4
searcher modes (or categories) – 1) novice2, 2) data gatherer, 3) location searcher
and 4) focused searcher. In the novice mode, the searcher knows nothing about of
the domain under search. As data gatherer, he/she is familiar with the domain or
subjects under search. A data gatherer just needs information on the topic he/she
is knowledgeable about. A location searcher just needs to locate information
previously encountered. The searcher in focused searching mode needs a specific
answer to a specific question.

As a novice, it is sometimes hard to decide which results are relevant and which
are not. A novice is also unsure of what he/she is searching for. The web-based
interface of Buddy has to provide an intuitive way of selecting the search engines.
Buddy has separated search engine choices into categories, namely – Science,
Math, Geography, History, Arts and General Search. This will helps students to
better focus their search into specific domains. Buddy also provides query refine-
ments and spelling suggestions for searchers. This is especially useful when the
searcher is in a novice mode. Unlike existing meta-search engines, Buddy does
not include sponsored links in its results.

As a data gather, a searcher’s aim is to gather information. Searching one search
engine is not enough. Searching many search engines manually is inefficient.
Buddy is able to search multiple search engines concurrently and return merged
results without duplicates or sponsored links. Hence a data gather can select the
specific domains he/she wants to search into.

As a location searcher, a searcher wishes to find the results that he/she came
across previously. Since Buddy provides utilities to let searchers save or email

their results, these can be accessed again locally in user computers or remotely
in their email account.

A focused searcher wishes to be able to query about a specific question. Buddy sup-
ports Boolean searching. This helps a focused searcher to obtain better results.

As students are still in a stage of learning, we expect more students to fall under
the modes of novice and data gatherer, especially when searching for education-
related materials. We would expect teachers to be in the data gatherer, location
searcher, or focused searcher modes most of the times. Once the searchers get
their answers, they might want to share the results with other students or teachers.
This is where the save-results utility provided by Buddy comes in handy.

2.2. objectives Guiding Buddy
To summarize, the objectives guiding the development of Buddy are twofold:

1. Dependability and Maintainability. This is the most important objective.
Connecting to source search engines should be easy. Buddy should be adaptable
to changes in search engine sources. Additional search engines could easily
be added into Buddy without recoding the data structures and methods. Any
changes to the source search engines should require minimal modifications to
the system, keeping the underlying data structures untouched. Modification
should be done in a declarative approach. People maintaining the system need
not be proficient in their programming skills.

2. To be an appropriate Learning tool (the name ‘Buddy’ reflects this objective).
Buddy must cater to the needs of a searcher in any of the 4 searcher modes
described in Section 2.1. Besides being able to search into multiple search
engine databases, Buddy must be able to provide tools for disambiguation,
such as query refinement and spelling suggestions so as to guide searchers
in the novice mode. Buddy must also allow searchers (data gatherers and
focused searchers) to search into specific directories and subjects. Buddy
must enable use of Boolean expressions to make queries specific for search-
ers (focused searchers). Buddy must enable searchers (location searchers) to
keep track of the searches they had done and to retrieve their previous search
results. Finally, the system must minimize the number of sponsored links in
the results.

3. SySTEM DESIGn conSIDErATIonS
Buddy was implemented using Java Development Kit (JDK) version 1.4.2 and Sun
System Application Server 8. Java codes were written with EditPlus2 text editor.
The web-based user interface (GUI) was implemented in JSP and OpenLaszlo
(www.openlaszlo.org), the open-source platform for rich Internet applications.
JSP files were written with Macromedia Dreamweaver 4. Some of the decisions
and considerations in designing Buddy are:

• Declarative Approach. Properties of the data structures of source search
engines are described in script files, contributing to maintainability. The
integration of new search engine is simple.

• Web scraping method. There are a few open-source parsing tools [5][8]
However, these are usually complex and incur a steep learning curve. Hence,
we defined a simple web scraping method that uses Java Regular Expression
and Pattern Matching API [6] and requires knowing only Regular expressions
to modify the web scraping structure. E.g. 3 parts of the search result (shown
in 3 different lines)

 “
 Yahoo!
	 Welcome	to	Yahoo!,	the	world’s	most	visited	…”

 can be extracted using

	 (?:) match URL
	 (.*?)(?:?) match Title
	 (.*?)(?:
<small><i>?) match Description

 Expressions in bold define the groups of string that we scrape from the HTML

page.
• Multithreading. Multithreading enables parallel request and retrieval of

results from the parent search engines. Experiments have shown that parallel
searches perform better than sequential searches [9].

460 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

•	 Query	refinement	method. Most search engines use tools like WordNet
[10] to help them perform query refinements. With the flexible web scraping
method, Buddy scrapes query refinements and spelling suggestions from other
search engines, as defined in configuration files. Hence, it is lightweight and
useable on low-cost platforms.

• Merging of results. The simplest way of aggregation is to return all the results
in one page without any post processing and re-ranking. This can lead to biased
or overlapping results. In contrast, positional methods are computationally
more efficient [11] and more precise. We use a positional method of ranking
the merged results.

• Web-based interface. As the system was implemented using Java, Java
Server Pages (JSP) was used to interact with the user and server. The GUI of
the system aims to be intuitive and user-friendly. As the target users of the
system are students and teachers, it is appropriate that the system is able to
connect to subject-specific directories. Search engines are classified according
to categories, namely Science, Math, Geography, History, Arts and General
Search. E.g. Science category will include science-related search engines
and directories – Scirus, Google’s Science Directory and Yahoo’s Science
Directory. This will help searchers focus their search in a specific subject.

4. SySTEM ArchITEcTurE
Buddy is made up of 5 components (see Figure 2):

1. Web user Interface – interacts with searchers

2. records Getter – processes queries and parses/scrapes HTML pages; returns
a vector of Records (results)

3. hTML Getter – retrieves HTML pages with the format query URL string;
multithreading is used to speed up page retrieval.

4. Engine Builder – informs Records Getter to perform query processing and
HTML parsing of different query/results format of different source search
engines.

5. results aggregator – merges, removes duplicates and re-ranks search records.
Borda Positioning Rule was used to merge and re-rank the results, as it is
relatively inexpensive, computationally efficient and has desirable properties
such as anonymity, neutrality and consistency [11][12].

5. ExpErIMEnTAL rESuLTS
To test the performance of Buddy, 37 queries3 were selected to obtain statistical
results. These 37 search terms have been used previously in other studies [11]
[12].

Experiments were done on a system with AMD Athlon XP 1600+ 1.4Ghz, 768
MB of RAM and a 2000 kbps Internet connection.

Two tests were conducted:

1. The first test connected the system to 6 search engines (Google, Yahoo, MSN
Search, AllTheWeb, AltaVista, and Ask.com) individually to obtain 200 normal
search results per query.

2. The second test meta-searched into 3 search engines (Google, Yahoo, and
MSN Search) concurrently to return aggregated search results (only top 200
from each search engines is used; we would expect about 600 results per
query). At the same time, we also searched for query refinements from Ask.
com and Yahoo, and spelling suggestions from Dictionary.com.

The reader should note that we did not want to compare the performance of the
various rank aggregation methods, nor compare performance with other meta-
search engines. Instead, we wanted to evaluate the time taken to parse the HTML
pages and aggregate the results against the total time taken to complete the task.
This is to evaluate the amount of overhead (in terms of processing time) used
for parsing and aggregating results. The tests were also to show that the system
was running properly.

5.1. Test-1 Analysis
In this test, Buddy was used to search into 6 search engines individually to obtain
200 results per search engine per query.

Parsing Overhead
We are able to evaluate the parsing overhead incurred in this test. Parsing over-
head is the amount of processing time required to parse HTML pages to create
Vectors of Records.

From Figure 3, Buddy clocked an average of 2.5 seconds while searching into
Google for 200 results per query. Ask.com took the longest time, with the bulk

Figure 2. (Top) System architecture; (Bottom) Interaction among components

Web User Interface

Records Getter

HTML Getter

Results
Aggregator

Engine Builder

Multiple remote search
engines’ databases

Figure 3. Time taken for Buddy to search sequentially into each search engine

Managing Worldwide Operations & Communications with Information Technology 461

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

of the time spent on retrieving the HTML Page. We observed that on the average,
only 7.24% of the processing time is involved in parsing. Bulk of the time is being
used to retrieve the HTML pages instead.

Limitation Factor
We conclude that the performance of Buddy is limited by the connection speed
to the search engines. We will expect the speed of combined search to be limited
by the speed of slowest search engine selected. For instance, Searcher A selects
Google and Ask.com. Searcher B selects Google and MSN Search. The system
will take a longer time to obtain results for Searcher A because page retrieval
from Ask.com is relatively the slowest (Figure 3).

Overlapping Records
It is interesting to note that there are actually a few (less than 1%) duplicates
already present within the results of a search engine (Table 1). E.g. out of the
7400 records from Google, the system has removed 11 duplicates.

5.2. Test-2 Analysis
In Test Two, for every query, Buddy is used to perform the task of searching 3
search engines to obtain 600 results, to obtain query refinements and spelling
suggestions. The final results are obtained by merging 200 results from each
of the 3 search engines. We will expect some duplicated results to be removed.
Here, we evaluated the overhead incurred for result aggregation. The top 3 fastest
search engines from Test One (Google, Yahoo and MSN Search) were selected
to participate in this test.

Results Aggregation Overhead and Performance
From Figure 4 (top), we can see that the average overhead cause by result aggre-
gation is only 0.32%. The system has, on average, removed 21.78% of the total
results that are overlapping. Also from Figure 4 (bottom), we can see that about
one-fifth of the results are duplicates. For each query, the system takes about an
average of 7.86 seconds to gather about 600 results from the 3 search engines,
aggregates them and provides, on average, 90 query refinements. The performance
is better than Helios [9], which took 12.4 seconds to retrieve 600 results.

In summary, the average time for Buddy to retrieve, parse and merge 600 results
from Google, Yahoo and MSN Search is 7.8 seconds per query. This timing
includes the retrieving and parsing of query refinement and spelling suggestions
from Ask.com and Dictionary.com.

The performance of the system is greatly affected by the available bandwidth.
Parsing and result aggregation overhead is not significant compared to that of
HTML retrieving.

6. concLuSIonS AnD FuTurE WorK
Currently, Buddy can already connect and extract data from

1. 9 search engines (Google, Yahoo, MSN Search, AllTheWeb, AltaVista, Ask.
com, Scirus, AOL and Lycos).

2. 15 Directories (Science, Math, Arts, History and Geography Directories) from
Google, Yahoo and Open Directory Project.

3. Non-search engine sites such as Dictionary.com.

Web scraping has been an important method in the data extraction module of this
system. It is an ad-hoc method that does not require us to learn extra APIs of the
databases we want to connect to. It has enabled the system to extract data from
virtually any free search engines that return results in HTML format.

It is interesting to note that the project has not involved external open source tools
like XQuery or WordNet. The whole project has been done using standard Java

Breakdown of Records obtained per query

0

100

200

300

400

500

600

700

af
fir

m
at

iv
e

ac
tio

n
al

co
ho

lis
m

am

us
em

en
t p

ar
ks

ar

ch
ite

ct
ur

e
bi

cy
cl

in
g

bl
ue

s
ch

ee
se

ci

tru
s

gr
ov

es

cl
as

si
ca

l g
ui

ta
r

co
m

pu
te

r v
is

io
n

cr
ui

se
s

D
ea

th
 V

al
le

y
fie

ld
 h

oc
ke

y
ga

rd
en

in
g

gr
ap

hi
c

de
si

gn

G
ul

f w
ar

H

IV

ja
va

Li

pa
ri

ly
m

e
di

se
as

e
m

ut
ua

l f
un

ds

N
at

io
na

l p
ar

ks

pa
ra

lle
l a

rc
hi

te
ct

ur
e

P
en

el
op

e
Fi

tz
ge

ra
ld

re
cy

cl
in

g
ca

ns

ro
ck

 c
lim

bi
ng

S

an
 F

ra
nc

is
co

S

ha
ke

sp
ea

re

st
am

p
co

lle
ct

in
g

su
sh

i
ta

bl
e

te
nn

is

te
le

co
m

m
ut

in
g

Th
ai

la
nd

 to
ur

is
m

vi

nt
ag

e
ca

rs

vo
lc

an
o

ze
n

bu
dd

hi
sm

Ze

ne
r

Search terms

N
um

be
r o

f r
ec

or
ds

No. of duplicates
No. of unique records

Table 1. Breakdown of records obtained by Buddy from each search engine (total
37 queries)

Figure 4. (Top) Statistics for Buddy to metasearch Google, Yahoo and MSN
Search (200 results per search engine); (Bottom)Breakdown of records obtained
per query

462 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

APIs. This shows the text processing power of Java language. Web scraping can
be conveniently done using Java’s Regular Expression and Patten Matching.

Declarative approach enables us to easily change the web scraping structure just by
changing the regular expressions. We can also change the properties of the source
search engines by editing the parameters in their descriptor script files. This does
not require much programming knowledge to maintain the system.

This proposed meta-search system will be useful to searchers, especially to the
target users in the education domain. The system is suitable for searchers who 1)
want to have a wider range of answers to their queries from multiple sources 2)
dread to see sponsored links 3) need help in query refinements and spelling sug-
gestions 4) want to share their results with others or save their results for future
reference. Thus, the system is certainly a suitable learning tool for students and
teachers, and should find applicability in schools.

The system retrieves results straight from sources, without adding sponsored
links to distract users. The system lets searchers have wider range of answers
to their queries from multiple sources. The system is useful to novice searchers
who need help in query refinements and spelling suggestions. The system also
allows searchers to share their results with others or save their results for future
reference. This system is certainly a suitable tool for learning for the students and
teachers. Above all, it serves the primary objective of being a meta-search engine
with increased dependability and maintainability.

Several problems were encountered and lessons learnt in the development of
Buddy. The performance of the initial prototype was not desirable. This was
because of the lack of parallelism being employed in the implementation. Retriev-
ing HTML pages is usually the bottleneck of the whole search process because
it takes a relatively long time to retrieve the pages. Subsequently, multithreading
was used to retrieve the pages from the search engines, and the performance of
the system is acceptable now. From the tests conducted (see Section 5), we can
see that performance is greatly influenced by the amount of bandwidth available.
The processing cost of parsing and result aggregations is not that high compared
to that of retrieving HTML pages. Performance will be affected if the available
connection speed is low. If we can speed up the HTML retrieval process by using
faster Internet connection, the system’s performance will improve.

Future work can include multi-language support, support for Really Simple
Syndication (RSS) format [13] and classification of search results into appropri-
ate categories.

rEFErEncES
[1] J. Barker, “The Best Search Engines – UC Berkeley - Teaching Library Internet

Workshops”, Finding Information on the Internet: A Tutorial, UC Berkeley,
2006, Accessed 5 Sep 2006 from http://www.lib.berkeley.edu/TeachingLib/
Guides/Internet/SearchEngines.html

[2] G.R. Notess, “Little overlap despite database growth!”, Search Engine Sta-
tistics: Database Overlap, Search Engine Showdown, Accessed 5 Sep 2006
from http://www.searchengineshowdown.com/statistics/overlap.shtml

[3] C. Sherman, “Metacrawlers and Metasearch Engines”, SearchEngineWatch,
23 Mar 2005, Accessed 4 Sep 2006 from http://searchenginewatch.com/show-
Page.html?page=2156241

[4] PCWorld, “The Straight Story on Search Engines”, PCWorld Computing
Center, About.com, 2006, Accessed 5 Sep 2006 from http://pcworld.about.
com/magazine/2007p115id97431.htm

[5] ceperez, “HTML Screen Scraping Tools Written in Java”, Manageability
– Java Open Source, Accessed 5 Sep 2006 from http://www.manageability.
org/blog/stuff/screen-scraping-tools-written-in-java/view

[6] Sun Microsystems, “Pattern”, Sun Java2SEv1.4.2, 2003, Accessed 5 Sep 2006
from http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

[7] N.K. Agarwal and D.C.C. Poo, “Meeting knowledge management challenges
through effective search”, Int. J. Business Information Systems, 1(3), 2006,
pp.292-309.

[8] B. Goetz, “Java theory and practice: Screen-scraping with Xquery”, Java
technology / XML, IBM DeveloperWorks, Accessed 4 Sep 2006 from http://
www-128.ibm.com/developerworks/xml/library/j-jtp03225.html

[9] A. Gulli and A. Signorini, “Building an open source meta-search engine”,
Special interest tracks and posters of 14th WWW Conf., May 10-14, 2005,
Chiba, Japan.

[10] Princeton University, WordNet: a lexical database for the English language,
Cognitive Science Laboratory, Accessed 3 Sep 2006 from http://wordnet.
princeton.edu/

[11] M.S. Mahabhashyam and P. Singitham, “Tadpole: A Meta search engine
Evaluation of Meta Search ranking strategies”, CS276A Project, Stanford
University, Fall 2002, Accessed 7 Sep 2006 from http://www.stanford.edu/
class/cs276a/projects/reports/mmahathi-pavan.doc

[12] C. Dwork, R. Kumar, M. Noar and D. Sivakumar, “Rank aggregation methods
for the web” In Proceedings of the 10th International Conf. on the World
Wide Web (WWW10), May 1-5, 2001, Hong Kong, ACM Press and Addison
Wesley, pp.613-622.

[13] D. Winer, RSS 2.0 Specification, Berkman Center for Internet & Society,
Harvard Law School, Accessed 4 Sep 2006 from http://blogs.law.harvard.
edu/tech/rss

EnDnoTES
1 There are many misspelt words that Google cannot detect e.g. arrowplane,

arrowdynamic, brase, buule, colar, canntin, diform, doubl, etc.
2 ‘Novice’ was termed ‘learner’ and ‘location searcher’ was termed ‘location

seeker’ in [7]. The terms have subsequently been revised to remove ambigu-
ity.

3 affirmative action, alcoholism, amusement parks, architecture, bicycling,
blues, cheese, citrus groves, classical guitar, computer vision, cruises, Death
Valley, field hockey, gardening, graphic design, Gulf war, HIV, java, Lipari,
lyme disease, mutual funds, National parks, parallel architecture, Penelope
Fitzgerald, recycling cans, rock climbing, San Francisco, Shakespeare, stamp
collecting, sushi, table tennis, telecommuting, Thailand tourism, vintage cars,
volcano, zen buddhism, and Zener.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/developing-buddy-towards-greater-

dependability/33112

Related Content

Schema Versioning in Conventional and Emerging Databases
Zouhaier Brahmia, Fabio Grandi, Barbara Oliboniand Rafik Bouaziz (2018). Encyclopedia of Information

Science and Technology, Fourth Edition (pp. 2054-2063).

www.irma-international.org/chapter/schema-versioning-in-conventional-and-emerging-databases/183918

Demand Forecast of Railway Transportation Logistics Supply Chain Based on Machine Learning

Model
Pengyu Wang, Yaqiong Zhangand Wanqing Guo (2023). International Journal of Information Technologies and

Systems Approach (pp. 1-17).

www.irma-international.org/article/demand-forecast-of-railway-transportation-logistics-supply-chain-based-on-machine-

learning-model/323441

The Influence of the Application of Agile Practices in Software Quality Based on ISO/IEC 25010

Standard
Gloria Arcos-Medinaand David Mauricio (2020). International Journal of Information Technologies and Systems

Approach (pp. 27-53).

www.irma-international.org/article/the-influence-of-the-application-of-agile-practices-in-software-quality-based-on-isoiec-

25010-standard/252827

Strategy for Performing Critical Projects in a Data Center Using DevSecOps Approach and Risk

Management
Edgar Oswaldo Diazand Mirna Muñoz (2020). International Journal of Information Technologies and Systems

Approach (pp. 61-73).

www.irma-international.org/article/strategy-for-performing-critical-projects-in-a-data-center-using-devsecops-approach-and-

risk-management/240765

Latin American and Caribbean Literature Transposed Into Digital: Corpus, Ecosystem, Canon, and

Cartonera Publishing
Adrian R. Vila (2018). Global Implications of Emerging Technology Trends (pp. 34-58).

www.irma-international.org/chapter/latin-american-and-caribbean-literature-transposed-into-digital/195820

http://www.igi-global.com/proceeding-paper/developing-buddy-towards-greater-dependability/33112
http://www.igi-global.com/proceeding-paper/developing-buddy-towards-greater-dependability/33112
http://www.igi-global.com/proceeding-paper/developing-buddy-towards-greater-dependability/33112
http://www.irma-international.org/chapter/schema-versioning-in-conventional-and-emerging-databases/183918
http://www.irma-international.org/article/demand-forecast-of-railway-transportation-logistics-supply-chain-based-on-machine-learning-model/323441
http://www.irma-international.org/article/demand-forecast-of-railway-transportation-logistics-supply-chain-based-on-machine-learning-model/323441
http://www.irma-international.org/article/the-influence-of-the-application-of-agile-practices-in-software-quality-based-on-isoiec-25010-standard/252827
http://www.irma-international.org/article/the-influence-of-the-application-of-agile-practices-in-software-quality-based-on-isoiec-25010-standard/252827
http://www.irma-international.org/article/strategy-for-performing-critical-projects-in-a-data-center-using-devsecops-approach-and-risk-management/240765
http://www.irma-international.org/article/strategy-for-performing-critical-projects-in-a-data-center-using-devsecops-approach-and-risk-management/240765
http://www.irma-international.org/chapter/latin-american-and-caribbean-literature-transposed-into-digital/195820

