
310 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

From Specification to Implementation:
A Method for Designing Multi-Agent
Systems in a Transformational Style

Hong Lin, University of Houston-Downtown, 1 Main Street, Houston, TX 77002, USA; E-mail: linh@uhd.edu

ABSTRACT
The suitability of using the Chemical Reaction Metaphor (CRM) to model multi-
agent systems (MASs) is justified by CRM’s capacity in specifying dynamic features
of multi-agent systems. This paper presents a module language that facilitates
a transformational method for implementing the specified multi-agent systems.
A computation model with a tree-structured architecture is proposed to support
the module language. The computational model is a straightforward abstraction
of networked computing sources with minimum assumptions. In this model, the
multicast network functionality pragmatizes the implementation of communications
and synchronization among distributed agents. The transformational method is
a rewriting process that translates the CRM specification into a program in the
module language.

Keywords: Multi-agent systems, the chemical reaction models, program specifica-
tion, very high-level languages, distributed systems, software architecture

INTRODUCTION
Agent-oriented design has become one of the most active areas in the field of
software engineering. The agent concept provides a focal point for accountabil-
ity and responsibility for coping with the complexity of software systems both
during design and execution (Yu, 2001). In this approach, a distributed system
can be modeled as a set of autonomous, cooperating agents that communicate
intelligently with one another, automate or semi-automate functional operations,
and interact with human users at the right time with the right information. Such
a model should be general enough to address common architectural issues and
not be specific to design issues of a particular system.

The modeling issue in the abstract computing machine level has been studied in
(Banâtre, Fradet, & Radenac, 2004), where the chemical reaction model (Banatre
& Le Metayer, 1990 & 1993, Banatre, Fradet, & Radenac 2005a, Le Metayer,
1994) is used to model an autonomic system. Given the dynamic and concur-
rent nature of multi-agent systems, we find that the chemical reaction metaphor
provides a mechanism for describing the overall architecture of the distributed
multi-agent systems precisely and concisely, while giving the design of the real
system a solid starting point and allowing step-by-step refinement of the system
using transformational methods (Lin, 2004; Lin & Yang, 2006).

As pointed out in (Banâtre, Fradet, & Radenac, 2005b), however, a direct imple-
mentation of a CRM specification is unlikely to be efficient and the authors
also pointed out that this is another exciting research direction. The difficulty in
reaching an efficient implementation of CRM specifications is caused by the use
of multisets as the basic data structures and that a direct implementation of the
selection operations in the reaction rules requires a brute force testing of the data.
We observe that implementation of CRM specifications in the system architecture
level, e.g., the architectural specification of an MAS, and that in the programming
level can be handled in different ways. By using network communication functions
to facilitate reaction testing, we can implement the specifications without brute
force testing. This implementation allows further refinement of node-specific
programs using proprietary techniques.

The presentation of our method will be in the following organization: In the second
Section, we present a brief description of the Chemical Reaction Metaphor; In the
third Section, we describe the proposed method for implementing CRM specifica-
tions of MASs. Discussions and Conclusions are drawn in the last section.

THE CHEMICAL REACTION MODEL
Based on the computation model of CRM, The Gamma language (Banatre & Le
Metayer, 1990 & 1993) was introduced to program the computation. In the Gamma
language, parallelism is left implicit and therefore a Gamma program is a true
natural parallel program. The Gamma language was found suitable for describing
a distributed and/or evolving system consisting distributed entities that execute
and interact with one another asynchronously and that are added into the system
or deleted from the system dynamically. Follow-up researches revealed that the
Gamma language can successfully address the architectural design issues since its
computation model captures the dynamic characteristics of a distributed system
(Inverardi & Wolf, 1995; Banatre & Le Metayer, 1996; Le Metayer, 1998). For
instance, it is a distinguished language for the architectural design in coordination
programming (Holzbacher, 1996), configuration programming (Kramer, 1990),
and software architecture (Allen & Garlan, 1994; Garlan & Perry, 1995).

The basic term of a Gamma program is molecules (or γ-expressions), which can
be simple data or programs (γ-abstractions). The execution of the Gamma program
can be seen as the evolution of a solution of molecules, which react until the solu-
tion becomes inert. Molecules are recursively defined as constants, γ-abstractions,
multisets or solution of molecules. The following is their syntax:

M ::= 	 0 | 1 | … | ‘a’ | ‘b’ | …		 ; constants
 |	 γP[C].M			 ; γ-abstraction
 |	 M1, M2			 ; multiset
 |	 <M>			 ; solution

The multiset constructor “,” is associative and commutative (AC rule). Solutions
encapsulate molecules. Molecules can move within solutions but not across solu-
tions. γ-abstractions are elements of multisets, just like other elements. They can
be applied to other elements of the same solution if a match to pattern P is found
and condition C evaluates to true and therefore facilitate the chemical reaction.
The pattern has the following syntax:

P ::= x | P, P | <P>

where x is a variable. In addition, we allow for the use of tuples (written x1:… :
xn) and names of types. For example, γ-abstraction

γ(x: Int, y: Int)[x ≥ y].x

can be interpreted as:	 replace x, y by x if x ≥ y, which is equivalent to finding the
maximum of two integers.

The semantics of γ-Calculus is defined as the following:

(γp[c].m1), m2	 = фm1		 if match(p/ m2) = ф and фc	
;γ-conversion

m1, m2		 = m2, m1					
;commutativity

Managing Worldwide Operations & Communications with Information Technology 311

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

m1, (m2, m3)	 = (m1, m2), m3					
; associativity

E1 = E2		 => E[E1] = E[E2]					
; chemical law

The γ-conversion describes the reaction mechanism. When the pattern p matches
m2, a substitution ф is yielded. If the condition фc holds, the reactive molecules
γp[c].m1 and m2 are consumed and a new molecule фm1 is produced. match(p/m)
returns the substitution corresponding to the unification of variables if the match-
ing succeeds, otherwise it returns fail.
Chemical law formalizes the locality of reactions. E[E1] denotes the molecule
obtained by replacing holes in the context E[] (denoted by []) by the molecule
E1. A molecule is said to be inert if no reaction can be made within:

Inert(m)  (m ≡ m’[(γp[c].m1), m2] => match(p/m2) = fail)

A solution is inert if all molecules within are inert and normal forms of chemical
reactions are inert γ-expression. Elements inside a solution can be matched only
if the solution is inert. Therefore, a pattern cannot match an active solution. This
ensures that solutions cannot be decomposed before they reach their normal form
and therefore permits the sequentialization of reactions. The following inference
rule governs the evolution of γ-expressions:

'
]['][2121

EE
ECEECEEE

→
≡≡→

For example, assume M, N, and R are names of three types, and f and g are two
molecules that transform an element of M into an element of N, and from N into
R, respectively, a producer can be defined as the following γ-abstraction:

prod = γ(x: M)[true]. <f, x>: N, prod

and a consumer can be defined as:

cons = γ(x: N)[true]. <g, x>: R, cons

A producer-consumer program that allows stream processing in which the producer
and the consumer work concurrently can be written:

PC M0 = <M0, prod, cons>

where M0 is the initial set of values of M type.

Implementing Architecture specifications
Although there were discussions about implementing the Gamma language on
parallel computers (Creveuil, 1991; Gladitz & Kuchen, 1996; Lin, Chen, & Wang,
1997), it is commonly accepted that there is no straight implementation of the
Gamma language that is efficient. After all, the Gamma language was designed
as a very high level language for program specifications and is, therefore, used to
specify the architectures of the coordinating systems. In a sequel, node-specific
software design in a distributed system still relies on conventional software engi-
neering methods. In a distributed multi-agent system, the separation of architectural
design and the design on proprietary platforms is deemed even more necessary for
dealing with the complexity of the system (Lin, Lin, & Holt, 2003). Therefore, we
will restrict the following discussion to implementing the Gamma specification
of the multi-agent systems in the architectural level with a minimum assumption
about the computation model supported by the underlying system.

Computation Model
The computation model on which we discuss the implementation of a Gamma
specification is a multi-process system, with processes dynamically created and
deleted and interacting with one another. No assumption is made about the alloca-
tion of the processes on distributed nodes of the underlying computing network.
That is to say that multiple processes can run on a single node or on distributed
nodes. The hierarchy of the multi-processes is a tree structure, in which processes
have full control over the creation/deletion of their descendent processes in the
lower level, but not vice versa. A process can “lock/unlock” its activities. Locking
means the freeze of all local computations and unlocking is the reverse opera-
tion. However, locking/unlocking does not apply to communications between
the manipulated processes and other nodes. Communications among nodes are
performed through communication channels which support unicast and multicast
communications. However, these communication functions are process based
instead of IP address based. That is to say, for example, multicast involves a set
of processes instead of a set of nodes with distinct IP addresses.

Module Specification
We propose a language for specifying processes that run on an execution envi-
ronment that supports the above computation model. Processes are specified by
modules in the module language. A module is composed of a name, a parameter
list used to take initial data when the process starts running, and a body block
consisting of sequentially executed statements.

module name(parameter-list)

begin
	 statement-sequence

end

First-class values are stored in a data pool named pool(mid), where mid is the
name of the module. We leave the data structures of the data pool unspecified to
maintain high-level abstraction. Their implementation is left to the stage of cod-
ing in a concrete programming language, which is subject to proprietary platform
technologies. We do assume, however, that data items are addressed in the data
pool so that we can locate particular data items and delete them.

Each module is associated with two multicast groups: sync(mid) and dist(mid).
sync(mid) is the multicast group used to implement atomic captures of molecules.
It involves synchronization using syn and ack messages, as described above.
dist(mid) is the multicast group for distributing produced molecules. We use mid
as an argument to identify the multicast group to which mid belongs, such as
sync(mid) and dist(mid). We may use sync or dist along if there is no ambiguity.
Note that both sync and dist can be either syntactically (statically) or semantically
(dynamically) checked. The syntactic check is used in this paper. We will show
how to do the syntactic check in Section 3.4.

Operations performed by a process include local operations, communications, and
process control operations. There are four local operations that can be performed
by a process:

•	 Add(data): add data into the pool
•	 Delete(data): delete data from pool
•	 Select(): select a set of element in pool that may match the pattern. The set

of selected elements is returned by the function if the selection is successful,
or fail otherwise.

•	 Release(): release the selected elements and return them to pool.

two communication operations:

•	 Send(type, sid, data): send a message. type can be syn, desyn, ack, or
dis. Semantics of Send operation differs with different types. A syn/desyn
message is sent to all processes in multicast group sync, while an ack message
is unicast to the sender of the syn message identified by sid. In addition,
data field of the ack message is empty. A dis message is sent to all processes
in multicast group dist and sid is insignificant.

•	 Recv(type, sids, data): Probe the message queue, return the first message
(through parameters type, sids, and data), or fail (through function return

312 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

value) otherwise. Recv() function can return data sent by multiple senders
identified by ids, e.g., Recv(ack, sync,) checks whether the syn message
has been acknowledged by all processes in sync.

and five process control operations:

•	 Create(id, arg1, arg2, …, argn): create a module with the given name and
argument list. The argument list is used to pass initial data set to the created
module.

•	 Delete(id): delete the module whose id is specified in the parameter and
collect the resulting multiset in pool of module id and join it with the local
pool. Also, add id into the local pool. If module id is not inert, Delete(id)
does not have effect and return immediately.

•	 Inert(): This is an overloaded operation. The default version (no argument)
freezes local activities in the local module if no more actions can occur, and
return true, or false otherwise; while the version with a module id (Inert(id))
tests whether module id is inert. Inert() function does not affect communica-
tions between the module and other modules. In addition, once a module is
inert, a message is sent automatically to the solution module in the immediate
upper level. If Inert() is called by a solution module, it automatically checks
whether there are still active modules in the lower level by checking the
received messages. A solution module will not become inert until all lower
level modules are inert.

•	 React(): resume local activities in the local module. Also, once a module is
re-activated, a message is sent automatically to the solution module in the
immediate upper level.

•	 Thread(abs, arg1, arg2, …, argn): create a thread, which runs the program
represented by the abs parameter. This feature is used to support mobile agents,
codes sent by other modules and run on the environment of the module that
receives it. The mobile agent is run as a thread so that it shares the data in
the execution environment of the receiving module. The result of the thread,
if any, can be retrieved by <abs>.

The body block of a module consists of a sequence of statements separated by “;”.
A statement is either a call to the one of above operations, a conditional statement,
or a looping statement. The following is the BNF definition:

block ::= begin statement-sequence end
statement-sequence ::= statement ; statement-sequence | empty
statement ::= operations | conditional | looping
conditional ::= if reactions fi
reactions ::= reaction ; reactions | empty
reaction ::= cond -> actions
cond ::= actions, bool-expression
actions ::= action , actions | empty
action ::= statement
looping ::= do reactions od
bool-expression ::= …	 ; an expression returning either true or false
operations ::= …		 ; the operations described above

The conditional statement has the following semantics: conditions are tested and
one of the statements whose corresponding conditions test to true is executed. If
none of the conditions tests to true, the control falls through the if statement and
continues to execute the statement that follows it. Its semantics of the looping
statement is: in each iteration, conditions are tested and one of the statements
whose corresponding conditions test to true is executed. This process is repeated
until none of the conditions evaluates to true. This semantics of the conditional
and looping statements is non-deterministic since no rule is set to govern how to
select the statement to execute when multiple conditions are evaluated to true.

Note that even the module language is still a high level specification language,
e.g., it leaves data structures and underlying communication mechanisms un-
specified and has nondeterministic control structures, it is a language based on
the realistic computation model. No higher-order operations exist in a program
in the module language.

For example, the three modules designed for the producer-consumer problem are
in the following. PC is the solution module, which creates the producer module
(prod) and consumer module (cons). In this particular program, sync is empty
because the patterns of prod and cons do not intersect. Dist(prod) = {cons} and
Dist(cons) = Ф, which means that the produced molecules are sent from prod
to cons but not vice versa.

module PC(M0)
begin

Create(prod, M0); Create(cons);
do
	 !Inert() -> 		 ; polling the status of both prod and cons
od
Delete(prod); Delete(cons)

end

module prod(N)
begin

do
	 x: M = Select() -> Thread(f, x), Delete(x), Send(dist, cons, <f>);
od

end

module cons()
begin

do
	 x: N = Select() -> Thread(g, x), Delete(x);
od

end

The modules designed for the nth element program follow.

module nth(M0 n)
begin
	 Create(sigma, M0);
	 do
		 Inert(sigma) -> Delete(sigma), Create(extr, pool, n);
	 od
	 Delete(extr);
end

module sigma(M)
begin
	 do
		 {(a, i): M, (b, j): M} = Select() and i < j and a > b
-> Delete((a, i): M, (b, j): M)), Add((b, i): M, (a, j): M);
	 od
end

module extr(M, n)
begin
	 do
		 {(a, i): M, n: Int} = Select() and i = n -> Delete((a, i): M, n: Int),

Add(a);
	 od
end

The above module specifications have artificial simplifications that make them
different from the module specifications obtained in an automatic transformation
(depicted in Section 3.4). For example, in a reaction, there should be a test whether
the sync group is empty before replacing elements. If the sync group is not empty,
a syn message must be sent and acknowledged before performing the replacement.
Similarly, after the reaction, there should be a test to the dist group.

By removing higher-order operations in the module level, we make the specifica-
tion of the system closer to actual program. Implementation of the program in
the module language can be carried out fairly directly on a system that supports
the computation model of the module language. Note that the implementation of

Managing Worldwide Operations & Communications with Information Technology 313

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

local computations is out of the scope of this paper. It is left to the phase when the
use of concrete language and platform are determined. We will rely on software
engineering technologies for finding an efficient implementation of local computa-
tions. For example, further refinement of the specification should include the use
of data structures to organize the data sets and implement the Select operation
by an algorithm designed in accordance with the data structure.

We refer the readers to (Lin, 2006) for case studies of the proposed method. (Lin,
2006) uses a higher-order Gamma formalism proposed by Le Metayer (1994).
More current studies including case studies and applications in Gamma Calculus
is being prepared for publication in the near future.

Discussions and CONCLUding remarks
The chemical reaction models were proposed years ago to address high-level
design issues of large distributed systems. Our work shows that it can be used to
design multi-agent systems in a top-down fashion and benefits the design meth-
odology with the reasoning capability of a formal system. While have shown that
implementing such a system is feasible on a network computing environment, we
would like to point out that our method can only be exerted to the module level,
i.e., we can only derive the system to the specifications of module interfaces and
operations. The implementation of individual modules will rely on conventional
software engineering technologies. Further studies are needed to address the
issues concerning module implementation and, perhaps, module abstraction, if
we are to follow a “bottom-up” approach to design the multi-agent system, i.e.,
build the system on top of a set of existing functional units that coordinate over
networks.

We present a method for implementing multi-agent system specifications in Gamma
Calculus using a transformational style. Our existing work has demonstrated
that Gamma Calculus, the newest formalism of the chemical reaction models,
is suitable to describe high-level architectural properties of multi-agent systems
and allows for systematic derivation and implementation of the systems. In this
paper, we present a set of rules that can be used to derive the specified system
into a module language, which is an intermediate language that do not include
any higher-order operations as those in Gamma Calculus and is supported by
most common networking execution environment. This study paves the way for
implementing the specified system by using a sequence of program transformation
and offers a new method for multi-agent system design.

Acknowledgment
This work is partially supported by the National Science Foundation award (grant#
0619312) and the U.S. Army Research Office Award (#W911NF-04-1-0024)
through Scholars Academy of University of Houston-Downtown.

REFERENCES
Allen R., & Garlan, D. (1994). “Formalising architectural connection,” Proc. of

the IEEE 16th International Conference on Software Engineering, 71-80.
Banatre, J.-P., & Le Metayer, D. (1990). “The Gamma model and its discipline of

programming,” Science of Computer Programming, (15), 55-77.
Banatre J.-P., & Le Metayer, D. (1993). “Programming by multiset transforma-

tion,” CACM, (36:1), 98-111.

Banatre, J.-P., & Le Metayer, D. (1996). “GAMMA and the chemical reaction
model: Ten years after,” In J-M. Andreoli, C. Hankin, and D. Le Metayer,
editors, Coordination Programming: Mechanisms, Models and Semantics.
Imperial College Press.

Banâtre, J.-P., Fradet, P., & Radenac, Y. (2004). “Chemical specification of auto-
nomic systems,” In Proc. of the 13th International Conference on Intelligent
and Adaptive Systems and Software Engineering (IASSE’04).

Banâtre, J.-P., Fradet, P., & Radenac, Y. (2005a). “Principles of chemical pro-
gramming,” In S. Abdennadher and C. Ringeissen (eds.): Proc. of the 5th
International Workshop on Rule-Based Programming (RULE’04), Vol. 124,
ENTCS, 133-147.

Banâtre, J.-P., Fradet, P., & Radenac, Y. (2005b). “Higher-order Chemical Program-
ming Style,” In Proceedings of Unconventional Programming Paradigms,
Springer-Verlag, LNCS, (3566), 84-98.

Creveuil, C. (1991). “Implementation of Gamma on the Connection Machine,”
Proc. Workshop on Research Directions in High-Level Parallel Program-
ming Languages, Mont-Saint Michel, 1991, Springer-Verlag, LNCS 574,
219-230.

Garlan D., & Perry, D. (1995). Editor’s Introduction, IEEE Trans. on Software
Engineering, Special Issue on Software Architectures.

Gladitz, K., & Kuchen, H. (1996). “Shared memory implementation of the Gamma-
operation,” Journal of Symbolic Computation 21, 577-591.

Holzbacher, A.A. (1996). “A software environment for concurrent coordinated
programming,” Proc. of the 1st Int. Conf. on Coordination Models, Languages
and Applications, Springer-Verlag, LNCS 1061, 249-266.

Inverardi, P., & Wolf, A. (1995). “Formal specification and analysis of software
architectures using the chemical abstract machine model,” IEEE Trans. on
Software Engineering, (21:4), 373-386.

Kramer, J. (1990). “Configuration programming, A framework for the development
of distributable systems,” Proc. COMPEURO’90, IEEE, 374-384.

Le Metayer, D. (1994). “Higher-order multiset processing,” DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, (18), 179-200.

Le Metayer, D. (1998). “Describing software architecture styles using graph
grammars,” IEEE Transactions on Software Engineering, (24:7), 521-533.

Lin, H., Chen, G., & Wang, M. (1997). “Program transformation between Unity
and Gamma,” Neural, Parallel & Scientific Computations, (5:4), Dynamic
Publishers, Atlanta, 511-534.

Lin, F.O., Lin, H., & Holt, P. (2003). “A method for implementing distributed learning
environments,” Proc. 2003 Information Resources Management Association
International Conference, Philadelphia, Pennsylvania, USA, 484-487.

Lin, H. (2004). “A language for specifying agent systems in E-Learning environ-
ments,” in: F.O. Lin (ed.), Designing Distributed Learning Environments with
Intelligent Software Agents, 242-272.

Lin, H., & Yang, C. (2006). “Specifying Distributed Multi-Agent Systems in
Chemical Reaction Metaphor,” The International Journal of Artificial Intel-
ligence, Neural Networks, and Complex Problem-Solving Technologies,
Springer-Verlag, Vol. 24, No. 2, pp.155-168.

Yu, E. (2001). “Agent-oriented modelling: software versus the world,” Agent-
Oriented Software Engineering AOSE-2001 Workshop Proceedings, LNCS
2222, Springer Verlag, 206-225.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/specification-implementation-method-designing-

multi/33079

Related Content

ICT Eases Inclusion in Education
Dražena Gašpar (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 2521-2531).

www.irma-international.org/chapter/ict-eases-inclusion-in-education/183964

Creating Active Learning Spaces in Virtual Worlds
Reneta D. Lansiquot, Tamrah D. Cunninghamand Zianne Cuff (2018). Encyclopedia of Information Science

and Technology, Fourth Edition (pp. 7880-7887).

www.irma-international.org/chapter/creating-active-learning-spaces-in-virtual-worlds/184484

An Optimised Bitcoin Mining Strategy: Stale Block Determination Based on Real-Time Data Mining

and XGboost
Yizhi Luoand Jianhui Zhang (2023). International Journal of Information Technologies and Systems Approach

(pp. 1-19).

www.irma-international.org/article/an-optimised-bitcoin-mining-strategy/318655

Integrating User Stories in the Design of Augmented Reality Application
Carlos Ankoraand Aju D. (2022). International Journal of Information Technologies and Systems Approach (pp.

1-19).

www.irma-international.org/article/integrating-user-stories-in-the-design-of-augmented-reality-application/304809

Using Causal Mapping to Uncover Cognitive Diversity within a Top Management Team
David P. Tegarden, Linda F. Tegardenand Steven D. Sheetz (2005). Causal Mapping for Research in

Information Technology (pp. 203-232).

www.irma-international.org/chapter/using-causal-mapping-uncover-cognitive/6520

http://www.igi-global.com/proceeding-paper/specification-implementation-method-designing-multi/33079
http://www.igi-global.com/proceeding-paper/specification-implementation-method-designing-multi/33079
http://www.igi-global.com/proceeding-paper/specification-implementation-method-designing-multi/33079
http://www.irma-international.org/chapter/ict-eases-inclusion-in-education/183964
http://www.irma-international.org/chapter/creating-active-learning-spaces-in-virtual-worlds/184484
http://www.irma-international.org/article/an-optimised-bitcoin-mining-strategy/318655
http://www.irma-international.org/article/integrating-user-stories-in-the-design-of-augmented-reality-application/304809
http://www.irma-international.org/chapter/using-causal-mapping-uncover-cognitive/6520

