
310  2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

From Specification to Implementation: 
A Method for Designing Multi-Agent 
Systems in a Transformational Style

Hong Lin, University of Houston-Downtown, 1 Main Street, Houston, TX  77002, USA; E-mail: linh@uhd.edu

ABSTRACT 
The suitability of using the Chemical Reaction Metaphor (CRM) to model multi-
agent systems (MASs) is justified by CRM’s capacity in specifying dynamic features 
of multi-agent systems. This paper presents a module language that facilitates 
a transformational method for implementing the specified multi-agent systems. 
A computation model with a tree-structured architecture is proposed to support 
the module language. The computational model is a straightforward abstraction 
of networked computing sources with minimum assumptions. In this model, the 
multicast network functionality pragmatizes the implementation of communications 
and synchronization among distributed agents. The transformational method is 
a rewriting process that translates the CRM specification into a program in the 
module language. 

Keywords: Multi-agent systems, the chemical reaction models, program specifica-
tion, very high-level languages, distributed systems, software architecture

INTRODUCTION
Agent-oriented design has become one of the most active areas in the field of 
software engineering. The agent concept provides a focal point for accountabil-
ity and responsibility for coping with the complexity of software systems both 
during design and execution (Yu, 2001). In this approach, a distributed system 
can be modeled as a set of autonomous, cooperating agents that communicate 
intelligently with one another, automate or semi-automate functional operations, 
and interact with human users at the right time with the right information. Such 
a model should be general enough to address common architectural issues and 
not be specific to design issues of a particular system. 

The modeling issue in the abstract computing machine level has been studied in 
(Banâtre, Fradet, & Radenac, 2004), where the chemical reaction model (Banatre 
& Le Metayer, 1990 & 1993, Banatre, Fradet, & Radenac 2005a, Le Metayer, 
1994) is used to model an autonomic system. Given the dynamic and concur-
rent nature of multi-agent systems, we find that the chemical reaction metaphor 
provides a mechanism for describing the overall architecture of the distributed 
multi-agent systems precisely and concisely, while giving the design of the real 
system a solid starting point and allowing step-by-step refinement of the system 
using transformational methods (Lin, 2004; Lin & Yang, 2006). 

As pointed out in (Banâtre, Fradet, & Radenac, 2005b), however, a direct imple-
mentation of a CRM specification is unlikely to be efficient and the authors 
also pointed out that this is another exciting research direction. The difficulty in 
reaching an efficient implementation of CRM specifications is caused by the use 
of multisets as the basic data structures and that a direct implementation of the 
selection operations in the reaction rules requires a brute force testing of the data. 
We observe that implementation of CRM specifications in the system architecture 
level, e.g., the architectural specification of an MAS, and that in the programming 
level can be handled in different ways. By using network communication functions 
to facilitate reaction testing, we can implement the specifications without brute 
force testing. This implementation allows further refinement of node-specific 
programs using proprietary techniques. 

The presentation of our method will be in the following organization: In the second 
Section, we present a brief description of the Chemical Reaction Metaphor; In the 
third Section, we describe the proposed method for implementing CRM specifica-
tions of MASs. Discussions and Conclusions are drawn in the last section.

THE CHEMICAL REACTION MODEL
Based on the computation model of CRM, The Gamma language (Banatre & Le 
Metayer, 1990 & 1993) was introduced to program the computation. In the Gamma 
language, parallelism is left implicit and therefore a Gamma program is a true 
natural parallel program. The Gamma language was found suitable for describing 
a distributed and/or evolving system consisting distributed entities that execute 
and interact with one another asynchronously and that are added into the system 
or deleted from the system dynamically. Follow-up researches revealed that the 
Gamma language can successfully address the architectural design issues since its 
computation model captures the dynamic characteristics of a distributed system 
(Inverardi & Wolf, 1995; Banatre & Le Metayer, 1996; Le Metayer, 1998). For 
instance, it is a distinguished language for the architectural design in coordination 
programming (Holzbacher, 1996), configuration programming (Kramer, 1990), 
and software architecture (Allen & Garlan, 1994; Garlan & Perry, 1995). 

The basic term of a Gamma program is molecules (or γ-expressions), which can 
be simple data or programs (γ-abstractions). The execution of the Gamma program 
can be seen as the evolution of a solution of molecules, which react until the solu-
tion becomes inert. Molecules are recursively defined as constants, γ-abstractions, 
multisets or solution of molecules. The following is their syntax:

M ::= 	 0 | 1 | … | ‘a’ | ‘b’ | …		  ; constants
      |	 γP[C].M			   ; γ-abstraction
      |	 M1, M2			   ; multiset
      |	 <M>			   ; solution

The multiset constructor “,” is associative and commutative (AC rule). Solutions 
encapsulate molecules. Molecules can move within solutions but not across solu-
tions. γ-abstractions are elements of multisets, just like other elements. They can 
be applied to other elements of the same solution if a match to pattern P is found 
and condition C evaluates to true and therefore facilitate the chemical reaction. 
The pattern has the following syntax:

P ::= x | P, P | <P>

where x is a variable. In addition, we allow for the use of tuples (written x1:… : 
xn) and names of types. For example, γ-abstraction 

γ(x: Int, y: Int)[x ≥ y].x

can be interpreted as:	 replace x, y by x if x ≥ y, which is equivalent to finding the 
maximum of two integers.

The semantics of γ-Calculus is defined as the following:

(γp[c].m1), m2	 =  фm1		  if match(p/ m2) = ф and фc	
;γ-conversion

m1, m2		  =  m2, m1					      
;commutativity
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m1, (m2, m3)	 =  (m1, m2), m3					   
; associativity

E1 = E2		 => E[E1] = E[E2]					   
; chemical law

The γ-conversion describes the reaction mechanism. When the pattern p matches 
m2, a substitution ф is yielded. If the condition фc holds, the reactive molecules 
γp[c].m1 and m2 are consumed and a new molecule фm1 is produced. match(p/m) 
returns the substitution corresponding to the unification of variables if the match-
ing succeeds, otherwise it returns fail. 
Chemical law formalizes the locality of reactions. E[E1] denotes the molecule 
obtained by replacing holes in the context E[ ] (denoted by [ ]) by the molecule 
E1. A molecule is said to be inert if no reaction can be made within:

Inert(m)  (m ≡ m’[(γp[c].m1), m2] => match(p/m2) = fail)

A solution is inert if all molecules within are inert and normal forms of chemical 
reactions are inert γ-expression. Elements inside a solution can be matched only 
if the solution is inert. Therefore, a pattern cannot match an active solution. This 
ensures that solutions cannot be decomposed before they reach their normal form 
and therefore permits the sequentialization of reactions. The following inference 
rule governs the evolution of γ-expressions:
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For example, assume M, N, and R are names of three types, and f and g are two 
molecules that transform an element of M into an element of N, and from N into 
R, respectively, a producer can be defined as the following γ-abstraction:

prod = γ(x: M)[true]. <f, x>: N, prod

and a consumer can be defined as:

cons = γ(x: N)[true]. <g, x>: R, cons

A producer-consumer program that allows stream processing in which the producer 
and the consumer work concurrently can be written:

PC M0 = <M0, prod, cons>

where M0 is the initial set of values of M type.

Implementing Architecture specifications
Although there were discussions about implementing the Gamma language on 
parallel computers (Creveuil, 1991; Gladitz & Kuchen, 1996; Lin, Chen, & Wang, 
1997), it is commonly accepted that there is no straight implementation of the 
Gamma language that is efficient. After all, the Gamma language was designed 
as a very high level language for program specifications and is, therefore, used to 
specify the architectures of the coordinating systems. In a sequel, node-specific 
software design in a distributed system still relies on conventional software engi-
neering methods. In a distributed multi-agent system, the separation of architectural 
design and the design on proprietary platforms is deemed even more necessary for 
dealing with the complexity of the system (Lin, Lin, & Holt, 2003). Therefore, we 
will restrict the following discussion to implementing the Gamma specification 
of the multi-agent systems in the architectural level with a minimum assumption 
about the computation model supported by the underlying system.

Computation Model
The computation model on which we discuss the implementation of a Gamma 
specification is a multi-process system, with processes dynamically created and 
deleted and interacting with one another. No assumption is made about the alloca-
tion of the processes on distributed nodes of the underlying computing network. 
That is to say that multiple processes can run on a single node or on distributed 
nodes. The hierarchy of the multi-processes is a tree structure, in which processes 
have full control over the creation/deletion of their descendent processes in the 
lower level, but not vice versa. A process can “lock/unlock” its activities. Locking 
means the freeze of all local computations and unlocking is the reverse opera-
tion. However, locking/unlocking does not apply to communications between 
the manipulated processes and other nodes. Communications among nodes are 
performed through communication channels which support unicast and multicast 
communications. However, these communication functions are process based 
instead of IP address based. That is to say, for example, multicast involves a set 
of processes instead of a set of nodes with distinct IP addresses. 

Module Specification
We propose a language for specifying processes that run on an execution envi-
ronment that supports the above computation model. Processes are specified by 
modules in the module language. A module is composed of a name, a parameter 
list used to take initial data when the process starts running, and a body block 
consisting of sequentially executed statements.

module name(parameter-list)

begin
	 statement-sequence

end

First-class values are stored in a data pool named pool(mid), where mid is the 
name of the module. We leave the data structures of the data pool unspecified to 
maintain high-level abstraction. Their implementation is left to the stage of cod-
ing in a concrete programming language, which is subject to proprietary platform 
technologies. We do assume, however, that data items are addressed in the data 
pool so that we can locate particular data items and delete them. 

Each module is associated with two multicast groups: sync(mid) and dist(mid). 
sync(mid) is the multicast group used to implement atomic captures of molecules. 
It involves synchronization using syn and ack messages, as described above. 
dist(mid) is the multicast group for distributing produced molecules. We use mid 
as an argument to identify the multicast group to which mid belongs, such as 
sync(mid) and dist(mid). We may use sync or dist along if there is no ambiguity. 
Note that both sync and dist can be either syntactically (statically) or semantically 
(dynamically) checked. The syntactic check is used in this paper. We will show 
how to do the syntactic check in Section 3.4.

Operations performed by a process include local operations, communications, and 
process control operations. There are four local operations that can be performed 
by a process:

•	 Add(data): add data into the pool
•	 Delete(data): delete data from pool
•	 Select(): select a set of element in pool that may match the pattern. The set 

of selected elements is returned by the function if the selection is successful, 
or fail otherwise.

•	 Release(): release the selected elements and return them to pool.

two communication operations:

•	 Send(type, sid, data): send a message. type can be syn, desyn, ack, or 
dis. Semantics of Send  operation differs with different types. A syn/desyn 
message is sent to all processes in multicast group sync, while an ack message 
is unicast to the sender of the syn message identified by sid. In addition, 
data field of the ack message is empty. A dis message is sent to all processes 
in multicast group dist and sid is insignificant. 

•	 Recv(type, sids, data): Probe the message queue, return the first message 
(through parameters type, sids, and data), or fail (through function return 
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value) otherwise. Recv() function can return data sent by multiple senders 
identified by ids, e.g., Recv(ack, sync, ) checks whether the syn message 
has been acknowledged by all processes in sync.

and five process control operations:

•	 Create(id, arg1, arg2, …, argn): create a module with the given name and 
argument list. The argument list is used to pass initial data set to the created 
module.

•	 Delete(id): delete the module whose id is specified in the parameter and 
collect the resulting multiset in pool of module id and join it with the local 
pool. Also, add id into the local pool.  If module id is not inert, Delete(id) 
does not have effect and return immediately.

•	 Inert(): This is an overloaded operation. The default version (no argument) 
freezes local activities in the local module if no more actions can occur, and 
return true, or false otherwise; while the version with a module id (Inert(id)) 
tests whether module id is inert. Inert() function does not affect communica-
tions between the module and other modules. In addition, once a module is 
inert, a message is sent automatically to the solution module in the immediate 
upper level. If Inert() is called by a solution module, it automatically checks 
whether there are still active modules in the lower level by checking the 
received messages. A solution module will not become inert until all lower 
level modules are inert. 

•	 React(): resume local activities in the local module. Also, once a module is 
re-activated, a message is sent automatically to the solution module in the 
immediate upper level.

•	 Thread(abs, arg1, arg2, …, argn): create a thread, which runs the program 
represented by the abs parameter. This feature is used to support mobile agents, 
codes sent by other modules and run on the environment of the module that 
receives it. The mobile agent is run as a thread so that it shares the data in 
the execution environment of the receiving module. The result of the thread, 
if any, can be retrieved by <abs>.

The body block of a module consists of a sequence of statements separated by “;”. 
A statement is either a call to the one of above operations, a conditional statement, 
or a looping statement. The following is the BNF definition:

block  ::= begin statement-sequence end
statement-sequence ::= statement ; statement-sequence | empty
statement ::= operations | conditional | looping
conditional ::= if reactions fi
reactions ::= reaction ; reactions | empty 
reaction ::= cond -> actions
cond ::=  actions, bool-expression
actions ::= action , actions | empty
action ::= statement
looping ::= do reactions od
bool-expression ::= …	 ; an expression returning either true or false
operations ::= …		  ; the operations described above

The conditional statement has the following semantics: conditions are tested and 
one of the statements whose corresponding conditions test to true is executed. If 
none of the conditions tests to true, the control falls through the if statement and 
continues to execute the statement that follows it. Its semantics of the looping 
statement is: in each iteration, conditions are tested and one of the statements 
whose corresponding conditions test to true is executed. This process is repeated 
until none of the conditions evaluates to true. This semantics of the conditional 
and looping statements is non-deterministic since no rule is set to govern how to 
select the statement to execute when multiple conditions are evaluated to true.

Note that even the module language is still a high level specification language, 
e.g., it leaves data structures and underlying communication mechanisms un-
specified and has nondeterministic control structures, it is a language based on 
the realistic computation model. No higher-order operations exist in a program 
in the module language. 

For example, the three modules designed for the producer-consumer problem are 
in the following. PC is the solution module, which creates the producer module 
(prod) and consumer module (cons).  In this particular program, sync is empty 
because the patterns of prod and cons do not intersect. Dist(prod) = {cons} and 
Dist(cons) = Ф, which means that the produced molecules are sent from prod 
to cons but not vice versa. 

module PC(M0)
begin

Create(prod, M0); Create(cons);
do
	   !Inert() -> 		  ; polling the status of both prod and cons
od
Delete(prod); Delete(cons)

end

module prod(N)
begin

do
	   x: M = Select() -> Thread(f, x), Delete(x), Send(dist, cons, <f>);
od

end

module cons()
begin

do
	   x: N = Select() -> Thread(g, x), Delete(x);
od

end

The modules designed for the nth element program follow.

module nth(M0 n)
begin
	 Create(sigma, M0);
	 do
		  Inert(sigma) -> Delete(sigma), Create(extr, pool, n);
	 od
	 Delete(extr);
end

module sigma(M)
begin
	 do 
		  {(a, i): M, (b, j): M} = Select() and i < j and a > b 
-> Delete((a, i): M, (b, j): M)), Add((b, i): M, (a, j): M);
	 od
end

module extr(M, n)
begin
	 do 
		  {(a, i): M, n: Int} = Select() and i = n -> Delete((a, i): M, n: Int), 

Add(a);
	 od
end

The above module specifications have artificial simplifications that make them 
different from the module specifications obtained in an automatic transformation 
(depicted in Section 3.4). For example, in a reaction, there should be a test whether 
the sync group is empty before replacing elements. If the sync group is not empty, 
a syn message must be sent and acknowledged before performing the replacement. 
Similarly, after the reaction, there should be a test to the dist group. 

By removing higher-order operations in the module level, we make the specifica-
tion of the system closer to actual program. Implementation of the program in 
the module language can be carried out fairly directly on a system that supports 
the computation model of the module language. Note that the implementation of 
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local computations is out of the scope of this paper. It is left to the phase when the 
use of concrete language and platform are determined. We will rely on software 
engineering technologies for finding an efficient implementation of local computa-
tions. For example, further refinement of the specification should include the use 
of data structures to organize the data sets and implement the Select operation 
by an algorithm designed in accordance with the data structure.

We refer the readers to (Lin, 2006) for case studies of the proposed method. (Lin, 
2006) uses a higher-order Gamma formalism proposed by Le Metayer (1994). 
More current studies including case studies and applications in Gamma Calculus 
is being prepared for publication in the near future.

Discussions and CONCLUding remarks
The chemical reaction models were proposed years ago to address high-level 
design issues of large distributed systems. Our work shows that it can be used to 
design multi-agent systems in a top-down fashion and benefits the design meth-
odology with the reasoning capability of a formal system. While have shown that 
implementing such a system is feasible on a network computing environment, we 
would like to point out that our method can only be exerted to the module level, 
i.e., we can only derive the system to the specifications of module interfaces and 
operations. The implementation of individual modules will rely on conventional 
software engineering technologies. Further studies are needed to address the 
issues concerning module implementation and, perhaps, module abstraction, if 
we are to follow a “bottom-up” approach to design the multi-agent system, i.e., 
build the system on top of a set of existing functional units that coordinate over  
networks.

We present a method for implementing multi-agent system specifications in Gamma 
Calculus using a transformational style. Our existing work has demonstrated 
that Gamma Calculus, the newest formalism of the chemical reaction models, 
is suitable to describe high-level architectural properties of multi-agent systems 
and allows for systematic derivation and implementation of the systems. In this 
paper, we present a set of rules that can be used to derive the specified system 
into a module language, which is an intermediate language that do not include 
any higher-order operations as those in Gamma Calculus and is supported by 
most common networking execution environment. This study paves the way for 
implementing the specified system by using a sequence of program transformation 
and offers a new method for multi-agent system design.
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