
216 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

XML in a Data Warehouse Design:
Performance Evaluation Utilizing

Geological Data
Behrooz Seyed-Abbassi, University of North Florida, 4567 St. Johns Bluff Road S, Jacksonville, FL 32224; E-mail: abbassi@unf.edu

Lori Stowers Pusey, University of North Florida, 4567 St. Johns Bluff Road S, Jacksonville, FL 32224; E-mail: puseyl@aetna.com

ABSTRACT
The structure of XML data presents challenges when determining efficient ways to
map it to a relational data warehouse. One of these challenges is the presence of
multi-valued child elements. Translating multi-valued XML elements to a relational
data warehouse may require the consideration of non-traditional approaches to
the design of the data warehouse. Traditionally, the star schema has been the
design of choice for data warehouses. However, the semi-structured nature of
XML data may make the use of alternatives, such as the snowflake schema, more
efficient. This paper presents the implementation details of methods for preserving
XML data in a relational data warehouse that are based on the star and snowflake
design schemas and compares the methods quantitatively and qualitatively for
geological data sets.

Keywords: XML, data warehouse, star schema, snowflake schema, relational
database, geological data

1. INTRODUCTION
Extensible Markup Language (XML) has become the accepted standard for ex-
changing data over the Internet [1]. As more organizations choose to collaborate
and share information on the Web, the demand to access and mine XML data is
dramatically increasing which in turn is resulting in the need to utilize design
methodologies for effective storage and retrieval or warehousing of the XML
information.

Many research projects, as well as software corporations (such as, Oracle [2],
Microsoft [3], and IBM [4]), have initiated techniques and various methods for
creating, storing, and retrieving XML information [5][6], including a variety of
proposed methodologies for translating XML data to a relational environment
[7]. Several published works cite the need to store XML data in a file system or
a relational database environment, as well as address some of the difficulties that
arise from the differences between the structure and semantics of XML data and
that of relational data [8][9].

As noted by Shanmugasundaram, native XML databases do not have the “sophisti-
cated storage and query capability already provided by existing relational database
systems” and “do not allow users to query seamlessly across XML documents
and other data stored in relational database systems” [10]. Two complications
presented by XML data have been identified as recursion and multi-valued (or
set-valued) elements [11].

In a relational data warehouse, the main issue in storing XML data is the poten-
tial inability to extract all the information necessary from the XML document
and definition to develop a data warehouse design that accurately represents the
XML data [12]. Another problem is the differences in “expressive power” of the
relationships presented in an XML document’s definition [13]. The source of
these issues is the semi-structured nature of XML.

The presented research work addresses design issues of storing multi-valued XML
data with many-to-many relationships, which results in multiple associations within
a relational data warehouse. Two alternative methodologies for preserving this
type of XML data are evaluated. Both methods involve decomposing the XML
elements and storing their values in a relational table within the data warehouse.

The first proposed alternative makes use of the snowflake schema in the design of
the data warehouse tables, while the second alternative utilizes the traditional star
schema. The details of the implementation of these alternative methods, along
with quantitative and qualitative comparisons of the methods are described.

The paper is divided into the following descriptive sections. Background informa-
tion on XML and the relational paradigm are given in sections 2 and 3 respectively,
with XML storage and mapping in a relational environment considered in sec-
tion 4. The alternative methodologies and the comparative study are described
in section 5, followed by more specific information about the implementation
processes in section 6. The testing results from running SQL queries against
each method’s data tables are given in section 7, with section 8 providing the
conclusions of the research.

2. XML CHARACTERISTICS
XML is a text-based language with user-defined tags that preserve the semantics
and relative context of information. The tags add flexibility to XML documents
and semantic representation. XML has become the preferred language for
exchanging data over the Web for two reasons. It is based on a standard and,
therefore, vendor-neutral, and since it is text-based, XML can be viewed within
any text editor [1]. In order to allow the consumer of an XML document to verify
its validity, a document type can be used in conjunction with the document to
define the allowable structures.

The three basic methods for storing XML documents are as a flat file, XML
database, and relational database [14]. The flat file approach allows for the ac-
cess of a specific XML document through the traditional file system hierarchy.
The XML database approach involves the “direct access to XML documents and
fragments of documents, and the ability to query across those documents and
fragments” [14]. The relational database approach is more complex and involves
decomposing (shredding) the XML document and storing element values in table
fields. Of the three approaches for storing and accessing XML data, only the
relational database allows for the creation of complex queries, can be integrated
with other relational data, and provides mechanisms for transaction management
and recovery [14].

3. RELATIONAL PARADIGM
Relational database, introduced by E. F. Codd in 1970 [15], is presented by col-
lections of tables (or relations) that contain data items with similar properties
(or attributes). In a table, each column corresponds to one of the attributes,
and each row (or tuple) represents a piece of data (or record) containing those
attributes. Data warehouses, which typically contain historical data or facts and
are structured specifically for querying and reporting, can take advantage of the
structure of relational database for design and implementation. However, because
the data is historical or factual and unlikely to change, data warehouses tend to
be denormalized and the data treated as read-only [15].

Two common schemas used for a data warehouse are the star and snowflake [16].
The star schema contains a single fact table that holds factual data (typically trans-
actions) surrounded by multiple dimension tables that contain reference data (i.e.,
components that comprise each fact or transaction) [15]. The fact table consists

Managing Worldwide Operations & Communications with Information Technology 217

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

of a unique primary key for each fact, a foreign key reference to the primary key
from each of the dimension tables, and optional measure data (such as quantity).
The star schema models a many-to-one relationship between the fact table and
each of the dimension tables.

The snowflake schema allows dimension tables from a star schema to be “organized
into a hierarchy by normalizing them” [16]. This schema, therefore, allows for
multi-valued attributes associated with a dimension table to be modeled using
additional, hierarchical tables. However, because a data warehouse can contain
an enormous number of records, performing joins between numerous tables can
be costly in terms of query response time.

Typically, the star schema is used to represent the multi-dimensional data ware-
house model and is better suited for querying, over the snowflake schema, because
the data is denormalized [17]. The more normalized snowflake schema, while
providing advantages when maintaining the data [17], requires additional table
joins for queries that access the normalized data and can, therefore, increase the
query response time [18].

4. STORING XML DATA IN RELATIONAL TABLES
There are three basic techniques to decompose (or shred) XML data for storage
in relational tables: no decomposition, partial decomposition, and total decom-
position [19][20]. They are differentiated by the extent to which the XML data
is decomposed and by the way that XML is stored in relational tables. The de-
compositions into relational tables generally fall into two categories: those that
start with an XML document and those that do not. Each approach varies in the
number of relational tables that are created and in the structural information and
element values that are captured.

The no decomposition approach (document-centric) involves storing the entire XML
document as text in a flat file or relational table’s field (e.g., as a character large
object-CLOB) [20]. In partial decomposition, XML data is selected, decomposed,
and stored in tables to allow quick access to specific data through SQL queries
[19]. Total decomposition (data-centric) involves decomposing the entire XML
document and storing its elements’ and attributes’ values in table fields. The third
approach fully exploits the query power of relational databases, but is a complex
implementation due to the differences in structure between XML documents and
relational tables, and cardinality uncertainties inherent in XML schemas.

A schema-based approach for storing XML data in a relational data warehouse
proposed by Golfarelli starts by translating an XML document into a graph and
an algorithm applied to the graph to create an attribute tree from which a data
warehouse conceptual design is developed. Golfarelli’s method, unlike other
methods, emphasizes the determination and evaluation of relationship cardinali-
ties within the graph. These cardinalities show a to-one or to-many relationship
between elements and their child elements (or sub-elements) [13].

Because of their structure, XML documents benefit from either the partial or total
decomposition for storing XML information in a relational data warehouse. Both
methods can handle multi-valued sub-elements in XML format using Golfarelli’s
methodology for to-one and to-many associations.

5. DATA WAREHOUSE DESIGN METHODOLOGIES
The focus of the proposed methodologies is on the problem of how to best capture
multi-valued XML data within the confines of a relational data warehouse. Because
of the inherent structure of a data warehouse, the fact table often contains a very
large number of records, which means that performing table joins between the
fact and dimension tables can be costly in terms of query response times. This is
one reason why the denormalized star schema is generally the preferred design
for a data warehouse.

The first methodology decomposes non-multi-valued elements and stores their
values in data warehouse dimension table fields similar to Golfarelli’s approach.
However, instead of dropping multi-valued child or sub-elements altogether,
the method is modified in order to capture the multi-valued sub-element data
by storing the data in XML format within a field. Because the multi-valued ele-
ments are not decomposed, no table hierarchies are created and the star schema
is maintained.

The second proposed alternative uses a variation of the star schema that includes
additional hierarchical tables, thus creating a snowflake schema. This method,

like the star schema, fully decomposes the XML data and captures its element
values in the data warehouse tables and makes use of an additional table to hold
the decomposed multi-valued element data. The additional table is then linked
via a foreign-key field to the dimension table that holds the parent element data;
thus creating a one-to-many relationship between the dimension table and the
added table creating a normalized snowflake.

6. IMPLEMENTATION PROCESS
The following subsections summarize the implementation process for the two pro-
posed design methods, including the XML data chosen for translation and storage,
the design of the data warehouses, and the queries applied to the data tables.

6.1 Geological XML Data
To evaluate the performance of XML in the design of a data warehouse, the initial
testing has been completed with text-based geological XML data to provide the
foundation for future expansion to support more complex semi-structured data.
The implementation process utilized the U.S. Geological Survey’s (USGS) website
[21] for historical XML data available in their earthquake advisories. The historical
earthquake data consists of the date and time or origin, geographic coordinates
(latitude and longitude), depth, magnitude, station used for the magnitude measure-
ment, region, and additional magnitudes. A sample data format for an earthquake
is presented below with the field names and data examples separated by :=.

Date:= 1/1/2004
Origin Time (UTC) (HH:MM:SS):=20:59:31.9
Latitude:= 8.310 S
Longitude:= 115.788 E
Depth:= 45
Magnitude:= 5.8
Station No. Used:= 119
Region:= Bali, Indonesia
Additional Magnitudes (Formula/Value/Station):= Mw/5.8/GS, Mw/5.8/HRV,

mb/5.5/GS, Ms/5.4/GS

The earthquake data from 2000-2005 were converted to a modified XML earthquake
advisory format and grouped by month resulting in 72 XML documents. To populate
the data warehouses with a sufficient amount of data to show query access time
differences between the methodologies, the data within the 72 documents (i.e., 6
years worth of data) was quadrupled to create over 100 years of data.

6.2 Implementation of the Data Warehouse Design
A fact table within the data warehouse consists of all of the data associated with
an earthquake advisory, including the data for the advisory in which the event is
reported as well as the event data. The following data items provided a complete
earthquake advisory record or fact:

• Advisory title
• Advisory publish date
• Event date
• Event latitude, longitude, and depth
• Event region
• Event magnitudes (one or more)
• Magnitude source
• Magnitude formula
• Magnitude value

The design for each data warehouse as shown in Figures 1 and 2 includes a single
fact table and dimension tables to hold the event advisory data. Time data is rep-
resented in a separate dimension table. The fact table contains foreign keys for the
publish date and event date that refer to the time dimension table’s primary key.

A separate dimension table is used to hold the publisher name. Using a separate
dimension table avoids unnecessary duplication and leaves room to include
advisories published by other organizations in the future. A separate dimension
table is also used to hold the advisory title and link for the same reasons. The
fact table contains foreign keys that link it to the publisher and advisory dimen-
sion tables.

218 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

The event region, latitude, longitude, and depth are represented in their own di-
mension table and the unique identifier included as a foreign key in the fact table.
Magnitude data is stored differently for the two methods. The star schema method
stores magnitude data in XML format for each event as presented in Figure 1.
This means that the magnitude data is maintained in the original XML document
format and stored as text within a table field called the Event table.

The snowflake schema method uses a separate, hierarchical table to store the
multi-valued magnitude data. This means that each magnitude is maintained
in a separate row with the source, formula, and value each contained within a
column. In addition to the general structure of the snowflake schema’s fact and
dimension tables, Figure 2 shows the multi-valued XML data broken down into
individual fields and records, and stored in a separate table. The table contains
a foreign key reference to the primary key of the dimension table, which holds
the parent element data.

6.3 Queries
Queries used to compare response times between the two methods are representative
of the types of queries that might actually be applied to the earthquake advisory
data in the real world. The queries are also designed to test the technique each
method uses to store the multi-valued magnitude data. These queries, in a busi-
ness language format, are:

1. Retrieve all earthquake event records
2. Retrieve a single earthquake event record for a given date and region
3. Retrieve all earthquake event records that had a magnitude >= 7
4. Retrieve earthquake event records that had a magnitude equal to the maximum

magnitude across all records
5. Retrieve the average magnitude over all earthquake event records

The goal when translating these queries to SQL is to extract the information with
a single query to the data warehouse, when possible. Multiple queries, however,
are necessary in some cases. The SQL queries for the star schema method, where
magnitude data is stored as XML for each event, involved using an extraction

function applied to the XML text in order to retrieve each individual element’s
data value. Because there may be multiple magnitude source, magnitude formula,
and magnitude value nodes for each event, these nodes must be accessed via a
subscript. In addition, because the number of subscripts necessary to access
the source, magnitude, and value nodes for each record varies, queries use the
maximum number of subscripts and require additional processing to filter any null
values returned. The SQL queries for the snowflake schema require an additional
join of the Magnitude table.

7. RESULTS
The data tables for the two data warehouses were created using Oracle 10g [2]
server with a dual Xeon processor. All queries were executed five times and the
average of the five runs taken as the representative response time for that query.

In addition, indices were created in an attempt to maximize query response times.
An index was created for each table’s primary key and functional indexes were
created for magnitude values within each data warehouse. The response times
for Queries 1, 2, and 3 for the Star Schema and Snowflake Schema methods show
less than an order of magnitude difference, while the Query 4 and 5 response times
for the two methods show several orders of magnitude difference. The variations
between the two sets of queries are a result of the differing query complexities
caused by the manner in which the multi-valued XML data is stored and, therefore,
must be accessed in the two methods. Queries 1, 2, and 3 involve either no or

Figure 1. Star schema data warehouse logical schema

Figure 2. Snowflake schema data warehouse logical schema

Figure 3. Response times (milliseconds) for queries without calculations or
aggregations

Figure 4. Response times (milliseconds) for queries with calculations or ag-
gregations

Managing Worldwide Operations & Communications with Information Technology 219

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

simple filtering, while Queries 4 and 5 involve calculations or aggregations of
the multi-valued magnitude data, which is stored differently in the Star Schema
and Snowflake Schema methods.

The response times (Figure 3) for Query 1 (retrieve all records) show that the
Snowflake Schema is slightly slower than the Star Schema. Although the query
for the Star Schema makes use of an XML extraction function, which is built into
Oracle, to extract the magnitude data, the Snowflake Schema method actually
takes slightly longer (435 vs. 355 ms for the Star Schema method). This is most
likely due to the increased time it takes to join records, which is greater for the
Snowflake Schema method because it has an extra table.

The response times for Query 2 (retrieve a single specific record) show that both
the Star Schema and Snowflake Schema methods are comparably efficient at
retrieving a single record (164 ms for the Star Schema method vs. 134 ms for the
Snowflake Schema method). Even though the Snowflake Schema method requires
the extra join for Query 2, the criteria for retrieving the single record translates
into a much faster execution plan that filters for the search criteria before scans
on the hierarchical table are performed.

The response times for Query 3 (retrieve all records that have a magnitude >=
7) show the Snowflake Schema method to be almost twice as fast as the Star
Schema method (433 vs. 919 ms for the Star Schema method). The query for the
Star Schema requires a comparison for each of the multi-valued XML elements,
which adds extra filter criteria. The Snowflake Schema method, however, can take
advantage of the relational database’s built-in ability to join and filter.

Queries 4 and 5 (Figure 4), which involve aggregations of the multi-valued mag-
nitude data, have response times that show differences between the Star Schema
and Snowflake Schema methods that are several orders of magnitude in size.

The response times for Query 4 (retrieve all records with the maximum magnitude)
show that the Snowflake Schema method is much faster than the Star Schema
(457 vs. 100,209 ms for the Star Schema method). Response times for Query 5
(retrieve the average magnitude of all records) also show the Snowflake Schema
method to be faster (86 vs. 181,584 ms for the Star Schema method).

Like Query 3, Queries 4 and 5 require access to and extraction of the multi-valued
magnitude data. With the Star Schema method, Queries 4 and 5 must access the
XML elements twice, once to perform a calculation or summation and a second
time to perform an aggregation. Because of the need to extract the XML text
elements in the Star Schema method, Queries 4 and 5 become cumbersome, while
the Snowflake Schema method, again, takes advantage of the relational database’s
built-in ability to join and filter.

The response time averages for all 5 queries (Figure 5) show that the snowflake
schema method demonstrates a response time average that is 153 times faster than
that of the star schema method. These results demonstrate that in this case, where
the XML documents contain multi-valued magnitude data, the decomposition of

the magnitude data into a snowflake schema is advantageous over attempting to
maintain the traditional star schema.

8. CONCLUSIONS
A comparison of the methods from a quantitative standpoint, based on the query
response times, shows that the snowflake schema method is consistently faster,
and markedly faster in most cases, than the star schema. The star schema method
has some response times that are comparable to the snowflake schema method.
However, queries that require calculations (e.g., sum) or aggregations (e.g., av-
erage) of data values stored as XML demonstrated much slower response times
with the star schema.

A comparison of the two methods from a qualitative standpoint, based on the
experiences gained from implementing the methods, also shows that the snow-
flake schema method is preferable over the star schema. The star schema method
required the use of a subscript when accessing multi-valued elements within the
XML data. In addition, the star schema method required additional filtering when
accessing a variable number of multi-valued elements and post-query processing
when performing aggregates. The snowflake schema method required only one
query and did not require filtering or post-query processing.

The implementation in this research has demonstrated that when storing multi-val-
ued XML data, the snowflake schema demonstrates faster query response times
than the star schema and may, therefore, be preferred over the star schema in cases
involving the storage of semi-structured XML data. Finally, the type of data and the
access methods necessary to retrieve the data should be an important consideration
when making decisions regarding the design of a data warehouse.

9. REFERENCES
[1] http://www.w3.org/XML/Core/#Publications
[2] http://www.oracle.com/index.html
[3] http://www.microsoft.com/
[4] http://www.ibm.com/us/
[5] Kanne, C. and Moerkotte, G. Efficient Storage of XML Data. Proceedings of

ICDE (San Diego CA, March 2000), 198.
[6] Eisenberg, A. and Melton, J. SQL/XML Is Making Good Progress. SIGMOD

Record 31, 2 (June 2002), 101-108.
 [7] Florescu, D. and Kossman, D. Storing and Querying XML Data Using an

RDBMS. Bulletin of the Technical Committee on Data Engineering 22, 3
(September 1999), 27-34.

[8] Kanne, C. and Moerkotte, G. Efficient Storage of XML Data. Proceedings of
ICDE (San Diego CA, March 2000), 198.

[9] Tian, F., DeWitt, D., and Zhang, C. The Design and Performance Evaluation
of Alternative XML Storage. SIGMOD Record 31, 1 (March 2002), 5-17.

[10] Shanmugasundaram, J., Krishnamurthy, R., and Tatarinov, I. A General Tech-
nique for Querying XML Documents Using a Relational Database System.
SIGMOD Record 30, 3 (September 2001), 20-26.

[11] Shanmugasundaram, J., et al. Relational Databases for Querying XML
Documents: Limitations and Opportunities. Proceedings of the 25th VLDB
Conference (September, 1999), 302.

[12] Xylem, L. A Dynamic Warehouse for XML Data of the Web. Bulletin of the
Technical Committee on Data Engineering 24, 2 (June 2001), 40-47.

[13] Golfarelli, M., Rizzi, S. and Vrdoljak, B. Data Warehouse Design from
XML Sources. Proceedings of the 4th ACM International Workshop on Data
Warehousing and OLAP (November, 2001), 40-47.

[14] Graves, M. Designing XML Databases. Prentice Hall, Upper Saddle River,
NJ, 2002.

[15] Connolly, T. and Begg, C. Data Systems: A Practical Approach to Design,
Implementation, and Management. 2nd ed., Addison-Wesley, New York,
1999.

[16] Elmasri, R. and Navathe, S. Fundamentals of Database Systems. 3rd ed.,
Addison-Wesley, New York, 2000.

[17] Chaudhuri, S. and Dayal, U. An Overview of Data Warehousing and OLAP
Technology. SIGMOD Record, 26, 1 (1997), 517-526.

[18] Seyed-Abbassi, B. Designing an Optimized Data Warehouse for Data Mining.
Proceedings of the 5th World Multiconference on Systemics, Cybernetics and
Informatics (July, 2001), 214-219.

[19] Appelquist, D. XML and SQL: Developing Web Applications. Addison-Wesley,
Boston, MA, 2002.

Figure 5. Response time average over all queries (milliseconds)

220 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

[20] Quin, L. Open Source XML Database Toolkit. Wiley Computer Publishing,
New York, 2000.

[21] http://neic.usgs.gov/neis/epic/epic_global.html or http://eqint.cr.usgs.gov/
neic/cgi-bin/epic/epic.cgi?SEARCHMETHOD=1&FILEFORMAT=4&SE
ARCHRANGE=HH&SYEAR=2000&SMONTH=&SDAY=&EYEAR=20
05&EMONTH=&EDAY=&LMAG=1&UMAG=9.9&NDEP1=&NDEP2=
&IO1=&IO2=&SLAT2=0.0&SLAT1=0.0&SLON2=0.0&SLON1=0.0&C
LAT=0.0&CLON=0.0&CRAD=0&SUBMIT=Submit+Search

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/xml-data-warehouse-design/33057

Related Content

Assessing Computational Thinking
Roxana Hadadand Kimberly A. Lawless (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 1568-1578).

www.irma-international.org/chapter/assessing-computational-thinking/112561

Towards Higher Software Quality in Very Small Entities: ISO/IEC 29110 Software Basic Profile

Mapping to Testing Standards
Alena Buchalcevova (2021). International Journal of Information Technologies and Systems Approach (pp. 79-

96).

www.irma-international.org/article/towards-higher-software-quality-in-very-small-entities/272760

Organizational Research Over the Internet: Ethical Challenges and Opportunities
W. Benjamin Porrand Robert E. Ployhart (2004). Readings in Virtual Research Ethics: Issues and

Controversies (pp. 130-155).

www.irma-international.org/chapter/organizational-research-over-internet/28297

Artificial Intelligence Technology-Based Semantic Sentiment Analysis on Network Public Opinion

Texts
Xingliang Fan (2023). International Journal of Information Technologies and Systems Approach (pp. 1-14).

www.irma-international.org/article/artificial-intelligence-technology-based-semantic-sentiment-analysis-on-network-public-

opinion-texts/318447

Variants of Genetic Algorithm for Efficient Design of Multiplier-Less Finite Impulse Response Digital

Filter
Abhijit Chandraand Sudipta Chattopadhyay (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 1304-1313).

www.irma-international.org/chapter/variants-of-genetic-algorithm-for-efficient-design-of-multiplier-less-finite-impulse-

response-digital-filter/112528

http://www.igi-global.com/proceeding-paper/xml-data-warehouse-design/33057
http://www.igi-global.com/proceeding-paper/xml-data-warehouse-design/33057
http://www.irma-international.org/chapter/assessing-computational-thinking/112561
http://www.irma-international.org/article/towards-higher-software-quality-in-very-small-entities/272760
http://www.irma-international.org/chapter/organizational-research-over-internet/28297
http://www.irma-international.org/article/artificial-intelligence-technology-based-semantic-sentiment-analysis-on-network-public-opinion-texts/318447
http://www.irma-international.org/article/artificial-intelligence-technology-based-semantic-sentiment-analysis-on-network-public-opinion-texts/318447
http://www.irma-international.org/chapter/variants-of-genetic-algorithm-for-efficient-design-of-multiplier-less-finite-impulse-response-digital-filter/112528
http://www.irma-international.org/chapter/variants-of-genetic-algorithm-for-efficient-design-of-multiplier-less-finite-impulse-response-digital-filter/112528

