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ABSTRACT
In this paper, the problem of reconstruction of different characteristic
signatures (CSs) of the monitored environmental scenes from the multi-
spectral remotely sensed data is cast in the unified framework of the
statistically optimal Bayesian inference making strategy aggregated
with the proposed cognitive descriptive regularization paradigm. The
reconstructed CS maps are then treated as sufficient statistical data
required for performing the environmental resource management tasks.
Simulation examples with the real-world remote sensing data are
provided to illustrate the efficiency of the proposed approach.

INTRODUCTION
In the environmental resource management applications [4], the
estimates of different environmental CSs [8], [9], [10] constitute the
statistical data of interest used to perform the management support tasks.
In view of this, we refer to the initial stage of the decision support problem
as a problem of high-resolution and high-quality reconstruction of the CSs
from a set of available measurements of the multi-sensor/multi-spectral
data. In principal, we propose a new approach to reconstructive imaging
and mapping of different CSs stated and mathematically treated as statistical
nonlinear ill-conditioned inverse problems. The descriptive regularization
(DR) based investigation of such class of problems was originally undertaken
in [1], [4] and developed in recent papers [6], [7] in the scope of the robust
regularization methodology. Some recent publications in this field employ
the information theory-based approaches [7], [12] but all those are again
developed within the DR methodology that simply alleviates the ill-posed
nature of the corresponding pattern estimation or scene reconstruction
inverse problems [11].

The key distinguishing feature of a new approach proposed in the present
study is that the problems of reconstructive multi-sensor imaging and
CSs mapping are treated in the unified framework of the statistically
optimal Bayesian minimum risk (MR) strategy aggregated with the
proposed new cognitive DR paradigm. The advantage of the environ-
mental mapping and feature extraction employing the developed fused
MR-DR method over the case of the conventional spatial processing
with the use of different previously proposed regularization techniques
was verified through extensive simulations. The resolution and informa-
tion content of different reconstructed CSs were substantially improved:
regions of interest and distributed object boundaries of the reconstructed
CSs were much better defined, while ringing effects were substantially
reduced. The simulation examples illustrate enhanced overall perfor-
mances attained with the proposed MR-DR method with the use of the
real-world remote sensing imagery.

MR-DR METHOD

DR Projection Formalism for Data Representation
Viewing it as an approximation problem [2], [6] leads one to a projection
concept for a reduction of the data wavefield  u(y) observed in a given

space-time domain Y ‘ y to the M-D vector U of sampled spatial-
temporal data recordings. The M-D observations in the terms of
projections [2], [7] can be expressed as

u(M)(y) = (PU(M)u)(y) = ∑ Umφm(y)           (1)

with coefficients U
m
 = [u, h

m
]

U
;

  
m = 1, …, M,  where P

U(M)  
denotes the

projector onto the M-D observation subspace U
(M) 

that is uniquely
defined by a set of the basis functions {f

m
(y)} that span U

(M)
. In analogy

to (1), one can define the projection scheme for the K-D approximation
of the scene scattering function over a given spatial image domain  X
∋ x as follows,

e(K)(x) = (PE(K) e)(x) = ∑ Ekϕk(x);            (2)
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E
; k = 1, …, K, where P
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k
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k
(x)} and
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k
 (x)} compose the dual bases in E

(K)
, and the linear integral projector

operator is specified by its kernel  P
E(K)
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Problem Model
General model of the observation wavefield  u is defined by specifying
the stochastic equation of observation of an operator form  [6]:  u = Se
+ n;  e ∈ E;  u, n ∈ U; S : E → U, in the Gilbert signal spaces E and U
with the metric structures induced by the inner products, [u

1
, u

2
]

U

= yyy duu
Y
∫ ∗ )()( 21 , and [e
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, e

2
]

E 
= xxx dee

X
∫ ∗ )()( 21 ,

 
respectively.

 
The operator

model of the stochastic equation of observation (EO) in the conven-
tional integral form [2], [4] may be rewritten as

u(y) = (Se(x))(y) = ∫
X

S ),( xy e(x)dx + n(y).            (3)

Using the presented above DR formalism, one can proceed from the
operator-form EO (3) to its conventional vector form,

U = SE + N , 
           (4)

in which E, N and U are the zero-mean vectors composed of the
coefficients E

k
 , N

m 
, and U

m
.  These are characterized by the correlation
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matrices RE = D = D(B) = diag(B), RN, and RU = SR
E
S+ + RN, respectively.

The vector, B, is composed of the elements  B
k
 = <E

k
E

k
*>; k = 1, …, K,

and is referred to as a 
 
K-D vector-form approximation of the Spatial

Spectrum Pattern (SSP). We refer to the estimate B̂  as the discrete-

form representation of the brightness image of the wavefield sources
distributed in the environment remotely sensed with the array radar
(SAR), in which case the continuous-form finite dimensional approxi-

mation of the estimate of the SSP distribution )(ˆ )( xKB in the environ-

ment in a given spatial image domain  X ∋ x  can be expressed as follows

)(ˆ )( xKB  = ∑ Bk |ϕk(x)|2 = ϕT(x)diag( B̂ )ϕ(x) ,            (5)

where 
 
j(x)

 
 represents a K-D vector composed of the basis functions

{j
k
(x)}.

Experiment Design Considerations
In the traditional remote sensing approach to image formation [3], the

matched filter  S+P
U(M)

u
(M)

(y) = )(ˆ Ke  is first applied to the data u
(M)

(y) to

form the estimate )(ˆ )( xKe  of the complex scattering function e
(K)

(x)

and the resulting image is formed as the averaged squared modulus of such

the estimates, i.e. )(ˆ )( xKB = aver{| )(ˆ )(
)( xj

Ke |2}. In that case, the degenerate

Signal Formation Operator (SFO)  S
(M)

 = P
U(M)

S  uniquely specifies the
system ambiguity function (AF) [12].

MR-DR Strategy

In the descriptive statistical formalism, the desired SSP vector B̂  is

recognized to be a vector of the principal diagonal of anstimate of the
correlation matrix RE(B), i.e. = {}

diag
. Thus one can seek to estimate =

{}
diag  

given the data correlation matrix  RU  pre-estimated by some means
[4],

UR̂ = Y = 
Jj∈

aver {U(j)U
+

(j)},            (6)

by determining the solution operator F such that

B̂ = { ER̂ }diag = {FYF+}diag .            (7)

To optimize the search of F we propose here the following MR-DR
descriptive regularization strategy

F → {min
F

ℜ (F)}, 

ℜ (F) = trace{(FS – I)A(FS – I)+} + α trace{FRNF+} 
           (8)

that implies the minimization of a weighted sum of the systematic and

fluctuation errors in the desired estimate B̂ , where the selection
(adjustment) of the regularization parameter a and the weight matrix A
provides the additional degreees of freedom incorporating any descrip-
tive properties of a solution if those are known a priori [5], [6].

GENERAL FORM OF SOLUTION OPERATOR
Routinely solving the minimization problem (8) we obtain

F = KA,αS+ 1−
NR , 

where

KA,α  = (S+ 1−
NR S + αA–1)–1 

and the desired SSP estimate is given by

EDMR−B̂  = {KA,αS+ 1−
NR Y 1−

NR SKA,α}diag = {KA,α
Jj∈

aver {Q(j)Q
+

(j)}KA,α}diag , 

where Q
(j)

 = {S+
1−

NR U
(j)

} is recognized to be an output of the matched

spatial processing algorithm with noise whitening.

MR-DR-Robustified Algorithms

Robust spatial filtering (RSF)
Putting A = I and a = N

0
/B

0
, where B

0  
is the prior average gray level of

the SSP, the F can be reduced to the following Tikhonov-type robust
spatial filter

FRSF  =  F (1)  =  (S+S + (N0/B0)I )
–1S+. 

Matched spatial filtering (MSF)
In the previous scenario for a >> ||S+S||, the F becomes

FMSF  =  F(2)  ≈  const ⋅ S+ 

 i.e. reduces to the conventional MSF operator.

Fig. 1. Rough radar image formed using conventional MSF technique
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Adaptive spatial filtering (ASF)
Consider now the case of an arbitrary zero-mean noise with  correlation
matrix RN, equal importance of two error measures in (9), i.e. a = 1, and

the solution dependent weight matrix 
 
A = D̂  = diag( B̂ ). In this case,

the MR-DR solution operator defines the adaptive spatial filter

FASF =  F(3)  = H =  (S+ 1−
NR S + 1ˆ −D )–1S+ 1−

NR . 

SIMULATIONS AND CONCLUDING REMARKS
In the present study, we simulated conventional side-looking imaging
radar (i.e. the array was synthesized by moving antenna) with the SFO
factored along two axes in the image plane: the azimuth (horizontal axis)
and the range (vertical axis). We considered a triangular shape of the
imaging radar range ambiguity function of 5 pixels width, and a 

 
sin(x)/

x
 
 shape of the side-looking radar antenna radiation pattern of 15 pixels

width at 0.5 from the peak level. Simulation results are presented in
Figures 1–3. The figure notes specify each particular employed imaging

Fig. 2. Enhanced scene image formed applying the RSF method

Fig. 3. Scene image reconstructed applying the ASF method

method. All scenes are presented in the same 512-by-512 pixel image
format. The advantage of reconstructive imaging using the MR-DR-
optimal ASF estimator (Fig. 3) and its robustified suboptimal RSF
version (Fig. 2) over the case of conventional MSF technique (Fig. 1)
is evident. The spatial resolution is substantially improved with both
(RSF and ASF) techniques; the regions of interest and distributed scene
boundaries are much better defined.

The presented study revealed also the way for deriving the suboptimal
RSF technique with substantially decreased computational load. Being a
structural simplification of the optimal ASF estimator, the RSF tech-
nique permits efficient non-adaptive numerical implementation in both
iterative and concise direct computational forms. The proposed robust
and adaptive nonlinear estimators contain also some design parameters
viewed as the system-level degrees of freedom, which with an adequate
selection can improve the performance of the corresponding tech-
niques. The proposed methodology could be considered as an alternative
approach to the existing ones that employ the descriptive regularization
paradigm [1] - [4] as well as the MR method for SAR image enhancement
recently developed in [8], [9].

The provided simulation examples illustrate the overall performance
improvements attainable with the proposed methods. The simulations
were performed over a typical environmental scene borrowed from the
real-world remote sensing imagery. The reconstructed CS maps are
treated as sufficient statistical data required for performing the environ-
mental resource management tasks.
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