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ABSTRACT

This paper provides a novel approach to characterization of uncertainty
measures in classification and prediction of complex spatial objects in
data mining. The paper shows the semantic limit of uncertainty measure
in classical probabilistic approaches and presents a formal approach to
characterize uncertainty parameters from Rough set and Dempster-
Shafer’s evidence theory in spatial domain. We have developed a rough
set and Dempster-Shafer’s evidence theory based formalism to objec-
tively represent uncertainty inherent in the process of service discov-
ery, characterization, and classification. Rough set theory is ideally
suited for dealing with limited resolution, vague and incomplete infor-
mation, while Depster-Shafer’s evidence theory provides a consistent
approach to model an expert’s belief and ignorance in the classification
decision process. Integrating these two approaches provide a math-
ematically consistent and objective means to measure belief, plausibil-
ity, ignorance and other useful measures in spatial classification.
Moreover, it provides predictive measures of uncertainty and thereby
allows including the context of spatial neighborhood effects.

INTRODUCTION

In recent years, there has been increased interest in understanding
uncertainty in various aspects of computing. Numerous formal and
informal systems have been developed for measure of uncertainty to
reason under conditions of ignorance. Traditional probability frame-
work allows commitment of partial beliefs to hypothesis; however the
remaining belief is assigned to its negation leaving no room for assigning
beliefs to the alternative hypothesis, which is often counter-intuitive.
The Bayesian approach to evidence combination ignores the quality of
evidence and normalizes varied probability judgments in a specialized
way. Not until after the Dempster’s generalization of the Bayes’
theorem (Dempster, 1967) and reformulation by Shafer (Shafer, 1976)
the uncertainty research turned to a prolific direction, popularly known
as Dempster-Shafer Theorem. In early 80°s Pawlak introduced the
rough set theory (Pawlak, 1982;) based on the notion of indiscernibility
and vagueness. Later, it was found that the basic notions of evidence
theory can be interpreted from the framework of rough set theory
(Skowron and Grzymala-Busse, 1994).

On the other hand, many approaches of uncertainty have been proposed
to characterize data and spatial processes (Mowrer and Congalton, 200).
Implicitly, uncertainty semantics in spatial information is often asso-
ciated with error, imprecision, reliability, validity, confusion, igno-
rance, noise and incompleteness. Although imprecision and imperfec-
tion is an endemic aspect of spatial information (Goodchild, 1995)
traditional spatial models and computational algorithms rarely allow to
incorporate them in the application modeling process.

EVIDENTIAL REASONING USING ROUGH SET
MODEL

Unlike probability theory, evidence theory differentiates between
ignorance and uncertainty. The classical probability theory does not
allow the concept of imprecise probability measure. The axiom of

additive law in probability theory requires sharply defined bound of
probability. Dempster-Shafer theory replaces the classical concept of
additive measure of probability by the concept of superadditives and
subadditive. Conceptually, Dempster-Shafer theory rests on the lack of
ability to map the objects and our knowledge of their attributes. In
contrast, rough set is concerned with the mapping of decision concepts
with respect to the attribute granules or equivalence classes. Different
of perspectives of Dempster-Shafer’s belief functions can be found in
(Lingras & Wong, 1990). However, a formal integration of rough set and
evidence theory was initially proposed by (Skowron & Grzymalla-Busse,
1994). They provided an interpretation of the belief and plausibility
function in terms of the lower and upper approximation of rough sets.
The interpretation was further extended by (Yao & Lingras, 1998).

SPATIAL NEIGHBORHOOD CONTEXT AND
UNCERTAINTY MEASURE

In this research we try to map evidence theoretic measure of probability
to sets of decision attributes of spatial objects to understand which
decision attributes belong to which objects and at the same time estimate
the contextual constraints of spatial classification of the neighborhood
evidences of decision classes. This allows us to model mutually close
neighbor in terms of cligues, which is defined as a subset of a neighbor-
hood system in which all pairs of sites are mutual neighbor. Thus, the
stochastic ordering of the spatial relation of the attributes of objects
allows introducing the belief measure of the appropriateness of a class
with respect to attribute and spatial context.

The Belief and Plausibility Functions for Decision Table
Let O be the frame of discernment such that ® = {61,...,6k }and Ar =
(U.,,, Aru {d,}) be a decision table fora given site. The belief function

for the frame of discernment ® and corresponding compatible decision
table A can be expressed as follows:

Bel ((8)Y m, (A)

Ach

ar?

The standard basic probability function is derived from the union of
unique decision elements of the equivalence class constitute a function
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where, ®,(0) = E'd[s]4, [s]Bd = Ud(s):ses],.

The basic probability assignment mA(6)is the ratio of the number of
objects with the same frame of discernment corresponding to their
equivalence class to the number of objects in the universe.

Let © be a frame of discernment, ® = {61,...,0k }. The decision d in
decision table determines another frame of discernment @, where @, =
{1,...,x(d)}. © is compatible with A if |r(d)| = |®| or in other words the
both frame of references have the same cardinality |@| = |® |. There
exists a bijection y(6): ©@ > O, between © and @, such that y(8) =i
fori=1,... k. If se [s]B then we can define the injection 3A : U > P(® )
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such that 3A (s) is the unique subset 6 of @, where P(®,) is the power
set of @,. For 8 < the belief function is:
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Let be the frame of discernment compatible with A = (U, A U{d}). For
arbitrary 0 < © the plausibility function is:

Following the definition of plausibility we have:
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The Belief Functions and Plausibility Functions Generated by
Neighborhood Decision Table

According to definition of the basic probability assignment for decision
table

|, (x(©)
m,(0) = ——
&) 0]
For a given frame of discernment ® = {61,...,0k }and the {d,}) decision
table in given site Ar = (, Ar U {}). For simplicity, let us denote the
D ,(x(0)) as 6.(8). Foragivensiterand cliquec € C(C1wC2uUC3...)
if we consider the non-empty intersections of the frame of discernments
in a clique and normalize the sum of the cardinality of intersection so
that 3 m,(A)=1 and mr(@) = 0 , then we get the following:
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For a given site r and clique ¢ € C (C1 w C2 w C3...) the belief function
can be derived from the definition:

Bel(0) =Y m(A)

Ach

Therefore,
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The basic probability assignment is derived from the non-empty
intersections of the frame of discernments in a clique. [I1,] is a

normalizing function which ensure the property Zm,(A) =1 and
AcO®

mr(J) = 0. For multi-site clique the basic probability assignment can be

expanded as follows:
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Each term in the right hand side of the equation results from the
intersections of the frame of discernment with respect to definition of
clique.

In a similar manner we can show that P/ () = Z Z ﬂSP,[ (A)]/ 1T,
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Given the existing neighborhood evidence, we can derive the evidential
measure of uncertainty using the above equations, which will help us to
characterize a service with respect to certain predefined category. Thus,
the decision regarding the appropriateness of services for a given
purpose or allocating certain resources can be objectively measured with
associated uncertainty hidden in the evidences. The same principle also
applies to new services. Once we have defined the frame of discernment
of the new services with respect to the indiscernibility relations of rough
set, it is easy to extract the belief and plausibility functions from the
neighborhood definition.

EMPIRICAL APPLICATIONS

We used a supervised classification in multiattribute geographic data.
The decision classes are the land cover classes from satellite remote
sensing images and the attributes used are biophysical evidences suggest-
ing a land cover class. The experiment considers land cover classes as
a focal element of a frame of discernment of all possible exhaustive
classes (i.e., hypotheses) and the combination of biophysical attributes
indicates the evidences in support of a set of land cover class for a given
pixel. The evidential ambiguity of different classes is the result of spatial
granularity of attributes, which is a typical characteristic of spatial
processes. The concept of “evidence” in this case entails not only the
attributes in support of decision classes, but also include spatial distri-
bution of attribute sets and the context of neighborhood evidence with
respect to given sample pixel.

Results: Randomness and Conflict in Evidential Claims

In a spatially homogenous region or in a spatially auto-correlated area,
the degree of randomness in the distribution of spatial features was found
relatively low. Inversely, in a heterogeneous area the candidate focal
elements increase as a result of numerous equally likely decision
categories. The overall distribution of Shannon entropy (Klir, 1994) in
much of the region was found close to zero, because in many pixels there
are only one focal element and the total mass assigned to the focal
element is m ({x}) = 1. However, in most of these areas cardinality of
the focal element is greater than one. Since, entropy measure is
incapable of representing uncertainty resulting from nonspecificity of
a focal element; apparently probability measure indicates that there is
no uncertainty in these pixels. This is because probability measures are
inherently fully specific and therefore incapable of characterizing the
nonspecificity dimension of multisource information. Interestingly,
the number of focal element is more than one in a thematic boundary
regions and corresponding entropy score is higher in these areas. It was
found that entropy measure performs well in characterizing boarder line
regions. The nonspecificity score ranges from minimum value log2 |1]
= 0 to the maximum possible log2 |5/ = 2.3219 bits. One bit of
nonspecificity displayed in the image express a total ignorance regarding
the truth or falsity of the focal elements in the frame of discernment
or possible subsets of decision classes. The result also shows a strong
positive spatial autocorrelation (with a Moran’s I of 0.94 and Geary’s
C value of 0.054 (Moran, 1950; Griffith, 1987). Since, nonspecificity
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Figure 1. Spatial Distribution of Nonspecificity
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of a pixel is estimated with respect to the neighboring pixel’s frame of
discernment within a context window, it is likely that nonspecificity
score would reflect the affect of class boundary. In a boundary region,
the total number of focal elements is greater than the inner region of
a class. However, the cardinality of each focal element is not large
enough. Therefore, in a boundary region the nonspecificity is low.
Similar reasoning can be extended in the measures of discord. The discord
function in the area shows a skewed distribution with a mean and standard
deviation of 0.193 and 0.26 respectively. The total uncertainty is
measured as the sum of discord and nonspecificity (Figure 1), which

shows the same range as the nonspecificity and discord, i.e., [0, Iogz‘X‘]
or (0, 2.32190).

CONCLUSIONS

The uncertainty involved in the implicit stochastic effect of neighbor-
hood evidences is formalized in a modified probability measure. Uncer-
tainty measures established here incorporates estimation of randomness
as well as conflicts in evidential claims of spatial as well as non-spatial
evidences. The numerical uncertainty measures are primarily derived
from the decision component of rough set equivalence classes, which are
characterized by the attribute structure of the neighborhood context of
spatial order. A key advantage of this model is that the model exploits

the spatial coincidence or co-location association in the model induc-
tion process without introducing any subjective bias in the uncertainty
measurement. The limitation of probabilistic measures are overcome by
integrating rough set and Dempster-Shafer model in spatial prediction
providing a means for improving classification schemes.

REFERENCES

Goodchild, M.F, and Buttenfield, B.P and Wood, J., (1995), Introduc-
tion to Visualizing Data Validity. In H.M. Hearnshaw and D.J.
Unwin (eds) Visualization in GIS. New York: Wiley, 1995.

Dempster, A. P., (1967 ) Upper and lower probabilities induced by a
multi-valued mapping. Annals of Mathematical Statistics,
38:325-339.

Pawlak, Z. (1982). Rough sets. Internat. J. Comput. Inform. Sci.,
11:341-356.Griffith, D.A. (1987), Spatial Autocorrelation: A
primer. Association of American Geographers, Resource Publi-
cations in Geography.

Klir, G. J and Folger, T.A, (1988) Fuzzy Sets , Uncertainty and
Information, Prentice-Hall, Inc., pp. 246-254,.

Lingras, P. J., & Wong, K. M. (1990). Two Perspectives of the
Dempster-Shafer Theory of Belief Functions. International
Journal of Man-machine Studies, 33, 467-487.

Moran, P.A.P. (1950), Notes on continuous stochastic phenomena.
Biometrika, 37:17

Mowrer, H. T. and Congalton, R.G (2000). Quantifying Spatial Uncer-
tainty in Natural Resources: Theory and Applications for GIS
and Remote Sensing. editors Ann Arbor Press, 2000.

Shafer, G., (1976) . A Mathematical Theory of Evidence. Princeton
University Press, New Jersey.

Sikder, 1., (2003), Uncertainty Management in Empirical Knowledge
Discovery and Classification in Spatial Databases, Doctoral
Dissertation. University of Maryland, Baltimore.

Smithson, M..(1989). Ignorance and Uncertainty: Emerging Para-
digms. Springer Verlag, New York.

Skowron, A. and Grzymal3a-Busse, J. (1994). From rough set theory
to evidence theory, in Advances in the Dempster-Shafer theory
of evidence, John Wiley & Sons, Inc., New York.

Yao, Y. Y., & Lingras, P. J. (1998). Interpretations of belief functions
in the theory of rough sets. Information Sciences. an Interna-
tional Journal, 104(1-2), 81-106.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.



0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/evidential-characterization-uncertainty-
location-based/32870

Related Content

Rough Set Based Ontology Matching

Saruladha Krishnamurthy, Arthi Janardananand B Akoramurthy (2018). International Journal of Rough Sets
and Data Analysis (pp. 46-68).

www.irma-international.org/article/rough-set-based-ontology-matching/197380

An Eco-System Architectural Model for Delivering Educational Services to Children With
Learning Problems in Basic Mathematics

Miguel Angel Ortiz Esparza, Jaime Mufioz Arteaga, José Eder Guzman Mendoza, Juana Canul-Reichand
Julien Broisin (2019). International Journal of Information Technologies and Systems Approach (pp. 61-81).
www.irma-international.org/article/an-eco-system-architectural-model-for-delivering-educational-services-to-children-

with-learning-problems-in-basic-mathematics/230305

The Importance of Systems Methodologies for Industrial and Scientific National Wealthy and
Development

Miroljub Kljajic (2010). International Journal of Information Technologies and Systems Approach (pp. 32-
45).

www.irma-international.org/article/importance-systems-methodologies-industrial-scientific/45159

Why It Is Difficult to Disengage From Facebook

Sonda Bouattour Fakhfakh (2018). Encyclopedia of Information Science and Technology, Fourth Edition
(pp- 7190-7199).

www.irma-international.org/chapter/why-it-is-difficult-to-disengage-from-facebook/184415

Creating Believable and Effective Al Agents for Games and Simulations: Reviews and Case
Study

Iskander Umarovand Maxim Mozgovoy (2014). Contemporary Advancements in Information Technology
Development in Dynamic Environments (pp. 33-57).
www.irma-international.org/chapter/creating-believable-and-effective-ai-agents-for-games-and-simulations/111604



http://www.igi-global.com/proceeding-paper/evidential-characterization-uncertainty-location-based/32870
http://www.igi-global.com/proceeding-paper/evidential-characterization-uncertainty-location-based/32870
http://www.irma-international.org/article/rough-set-based-ontology-matching/197380
http://www.irma-international.org/article/an-eco-system-architectural-model-for-delivering-educational-services-to-children-with-learning-problems-in-basic-mathematics/230305
http://www.irma-international.org/article/an-eco-system-architectural-model-for-delivering-educational-services-to-children-with-learning-problems-in-basic-mathematics/230305
http://www.irma-international.org/article/importance-systems-methodologies-industrial-scientific/45159
http://www.irma-international.org/chapter/why-it-is-difficult-to-disengage-from-facebook/184415
http://www.irma-international.org/chapter/creating-believable-and-effective-ai-agents-for-games-and-simulations/111604

