
534 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Representing, Organizing and
Reusing Knowledge About Functional
and Non-Functional Concerns During

Software Development
Sam Supakkul, Titat Software LLC, , ssupakkul@ieee.org

 Lawrence Chung, The University of Texas at Dallas, chung@utdallas.edu

ABSTRACT
The quality of a software system largely depends on how good, or bad,
the various development decisions are, during just about any phase of
software lifecycle. The quality of development decisions in turn would
depend on what kind of alternatives are explored, what kind of trade-
offs are analyzed, and how a particular selection is made for the software
system. Usually, however, the process of decision making is carried out
only informally, where the knowledge and rationale that led to the
decision are not explicitly documented. This makes it difficult for others
to understand why certain decisions were made and also to reuse the
knowledge in future projects in a systematic manner. This paper presents
a goal-oriented methodology for explicitly representing, organizing and
reusing the variety of knowledge of development alternatives, along
with their trade-offs. In this methodology, non-functional characteris-
tics, such as performance and security, are treated as (soft) goals to be
achieved and act as the criteria to select among the alternatives for
meeting functional concerns. The methodology is illustrated using the
implementation of a class association as an example.

I. INTRODUCTION
 The quality of a software system largely depends on how good, or bad,
the various development decisions are, during model refinement [14] in
just about any phase of software lifecycle. The quality of development
decisions in turn would depend on what kind of alternatives are explored,
what kind of trade-offs are analyzed, and how a particular selection is
made for the software system. For example, Fig. 1 shows alternatives
for implementing a class association between Student and Course classes.
A software engineer may choose option 2 to minimize memory usage

(space performance) in tight memory environments such as in embedded
systems, but may choose option 1 in less stringent environments for
better average time performance and more flexibility in different usage
scenarios.

However, the decision making is usually carried out only informally
without records of the knowledge and rationale used during the process
[20]. This makes it difficult for others to understand why certain
decisions were made and to reuse the knowledge. These problems are the
main focus of the design rationale research that produces a number of
methods to capture design rationale. However, these methods are
generic for general design that is not tailored for software. The NFR
Framework [4,5] is an approach that is more specific and suitable for
software development, especially for non-functional requirements
(NFRs) modeling and architectural design. This paper adopts and extends
the NFR Framework to present a goal-oriented and knowledge-based
framework for representing and organizing knowledge used for explor-
ing design alternatives and evaluating trade-offs. We illustrate the
application of the approach using the class association implementation
shown in Fig. 1 as running examples throughout the paper.

The rest of the paper is organized as follows. Section II gives a brief
overview of the NFR Framework. Section III describes the knowledge
representation in design model and how to capture it as Method.
Section IV describes how to organize Methods. Section V describes how
the Methods are reused. Finally, Sec. VI offers some conclusion
remarks.

II. OVERVIEW OF THE NFR FRAMEWORK
The NFR Framework [4,5] is a goal-oriented framework for dealing with
NFRs, which are represented as softgoals to be satisficed. The framework
employs “goal-refinement, exploration of alternatives, and evalua-
tion” analysis pattern. Using this pattern, first, high level NFRs are
identified as NFR softgoals and refined using AND/OR decomposition.
Then, design decisions, identified as operationalizing softgoals, for
operationalizing the NFR softgoals are identified, refined, or further
operationalized by lower level design decisions. Last, the design deci-
sions are evaluated based on how they contribute (positively or nega-
tively) to the NFR softgoals. This entire process is recorded in a diagram
called Softgoal Interdependency Graph (SIG). A claim softgoal may be
defined to make an argument for or against any node or link in the SIG.
In the SIG, all softgoals are named with “Type[Topic]” nomenclature.
For NFR softgoals, “Type” indicates the NFR concern and “Topic” the
context for the NFR. For operationalizing softgoals, “Type” indicates
the operationalization concept and “Topic” the context for which the
solution is applicable. Finally, for claim softgoals, “Type” indicates
either FormalClaim or (informal) Claim [4] and “Topic” the corre-
sponding argument description. Figure 2.a shows an example SIG. The

Student Course
* *

Implementation alternatives by object location

1) Using an association class

2) Storing associated B objects in A objects

class StudentCourse {
 A a_objs[] ;
 B b_objs[];
}

class Course {
}

class Student {
}

class Student {
 Course courses[];
}

class Course {
}

3) Storing associated A objects in B objects

class Student {
}

class Course {
 Student students[];
}

4) Storing associated objects on both sides
class Student {
 Course courses[];
}

class Course {
 Student students[];
}

Implementation alternatives by object type

6) Using linked list
class Student {
 java.util.List courses;
}

7) Using hash table
class Student {
 java.util.Map courses;
}

5) Using array
class Student {
 Course courses[];
}

Figure 1. Examples of Alternatives for Implementing a Class Association

Emerging Trends and Challenges in IT Management 535

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

individual pieces knowledge used to build each piece of the SIG can be
captured as Methods as shown in Fig. 2.b.

III. REPRESENTING AND CAPTURING DEVELOPMENT
KNOWLEDGE

A. Representing Development Knowledge
Figure 3 shows a design decision process for implementing a class
association. In this paper, “goal” refers to a functional goal and
“softgoal” refers to a non-functional goal. First, we identify and refine
functional goals (i.e. “Implementation[Association]”). Second, design
decisions (“AssociationClass[Association]”,
“ObjectOnOneEnd[Association]” and
“ObjectOnBothEnds[Association]”) are identified. We repeat the re-
finement and operationalization of operationalizing goals until they are
low-level enough for implementation. Last, the design decisions are
evaluated based on their positive or negative contributions toward the
highest criticality NFR softgoals (i.e. TimePerformance).

B. Capturing Development Knowledge
We adopt and extend the Method mechanism from the NFR Framework
to capture individual pieces of FRs-related knowledge with three addi-
t ional types of Methods: Model Refinement, Functional
Operationalization, and Model Mapping Methods. Attributes of the
Methods (e.g. parent, contribution, and applicabilityCondition) are
used as the selection criteria for selecting applicable Methods to apply.
When a Method is applied against a parent goal, the goals described by
the offspring attribute would be generated and linked to the parent goal.

Model Refinement Method
Using Fig. 3 as an example, implementing the class association is
represented by the root goal “Implementation[Association]”. An ex-
ample of Model Refinement Method definition based on Fig. 3 is given
below.

RefinementMethod RefineClassAssociation

parent: UML.Association /* a UML metaclass */

offspring: Implementation[Association]

contribution: CodeRefinement

applicabilityCondition: /* user defined */

Functional Operationalization Method
This method captures the knowledge that creates and links an
operationalizing goal to a parent functional or operationalizing goal. An
example is given as follows.

FnOperationalizationMethodOperationalizeAssociation_AssociationClass

parent: Implementation[Association]

offspring: AssociationClass[Association]

contribution: MAKE TimePerformance, HURT !!SpacePerformance

applicabilityCondition: /* user defined */

Model Mapping Method
Model Mapping Method captures the knowledge for mapping the parent
of the root goal to a target model. An example of Model Mapping
Method is given below. The mappingMeans attribute indicates the
mechanism or technique used for the mapping. The mappingSpec
attribute specifies the detailed mapping based on the mappingMeans.

MappingMethod LinkedListAssociationClassToJava

parent: LinkedListAssociationClass[Association]

offspring: Java

applicabilityCondition: /* user defined */

mappingMeans: template

mappingSpec:

class ${end1}_${end2}_Assoc {

 Java.util.List ${end2};

 Java.util.List ${end1}

}

IV. ORGANIZING DEVELOPMENT KNOWLEDGE
It is not only important that we can represent knowledge, but also how
we structure and organize it [10]. This section discusses the organization
of Methods along the three organizational dimensions [11].

A. Aggregation/Decomposition Dimension
In Fig. 4.a, following the composite design pattern [16], Methods may
be combined to form a CompositeMethod. Because CompositeMethod

ResponseTime
[Account]

ResponseTime
[GoldAccount]

ResponseTime
[RegularAccount]

PerformFirst
[GoldAccount]

+

++
Claim [“Priority
actions can be
performed first”]

NFR DecompositionMethod ResponseTimeViaSubclass
 parent: ResponseTime[Account]
 offspring: {ResponseTime[RegularAccount],
 ResponseTime[GoldAccount]}
 contribution: AND

OperationalizationMethod HelpResponseTimeWithPerformFirst
 parent ResponseTime[GoldAccount]
 offspring: PerformFirst[GoldAccount]
 contribution: HELP

ArgumentationMethod PerformFirstRationale
 parent PerformFirst[GoldAccount]
 offspring: Claim[“Priority actions can be performed first”]
 contribution: MAKE

...

(a) (b)

non-functional softgoal

operationalizing softgoal

claim softgoal

AND-decomposition

OR-decomposition

Legend

X

satisficed softgoal

denied softgoal

positive contribution
negative contribution

Figure 2. A Softgoal Interdependency Graph Representing NFRs Related
Concepts (a) that are Captured as Methods (b)

Student Course
* *

Implementation
[Association]

Association
Class
[Association]

ObjectOnOne
End
[Association]

ObjectOnBoth
Ends
[Association]

Time
Performance

Linkedlist
[Association] HashTable

[Association]

SOME-

++ X X

Array
[Association] X X

+
+

Claim[“ Not good for
update performance”]

Claim[“Not good for access
from opposite end objects”]

Claim[“Not good for update as
arrays need to be resized”]

Claim[“Not good for access
as objects in hash table
may not be readily
traversable and in a
desirable order”]

Java

++ +

M

SOME- SOME-

CodeRefinement

Figure 3. Representation of Functional and Non-functional Knowledge
for Implementing a Class Association

536 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

is also a Method, it can be contained in other CompositeMethods. An
example of the CompositeMethod definition is given below. When the
OperationalizeMessage is applied, the two contained Methods are
applied against the parent goal.

CompositeMethod AssociationClassJavaImpl

parent: Implementation[Association]

applicabilityCondition:/* user defined */

methods: OperationalizeAssociation_AssociationClass,
LinkedListAssociationClass, LinkedListAssociationClassToJava

B. Generalization/Specialization Dimension
Figure 4.b shows that a Method may be specialized by another Method.
The specialized Method inherits all of the attributes from the general-
ized Method, optionally adds or redefines one or more attributes. An
example of a specialized Method is given below.

F n O p e r a t i o n a l i z a t i o n M e t h o d
Operat ional izeAssociat ion_Associat ionClass_Time extends
OperationalizeAssociation_AssociationClass

parent: Implementation[Association]

offspring: AssociationClass[Association]

contribution: MAKE !TimePerformance, HURT !!SpacePerformance

applicabilityCondition:/* specific condition */

C. Classification/Instantiation Dimension
Figure 4.c shows the classification/instantiation relationship of
MetaMethod, Method, and MethodInstance.

V. REUSING DEVELOPMENT KNOWLEDGE
When sufficient Methods are defined and stored in a knowledge base,
they may be selected and applied successively to generate or update a goal
graph to record the design decision process (i.e. Process) and also the
target model elements (i.e. Product). Figure 5 depicts the Method
application process.

VI. CONCLUSIONS
We have presented a goal-oriented and knowledge-based framework for
representing, organizing, and reusing development knowledge. The
framework extends the NFR Framework with the following extensions:
1) the “goal-refinement, exploration of alternatives, and evaluation”
pattern is now made applicable to functional concerns; 2) three addi-
tional types of Methods have been proposed to capture individual pieces
of FRs-related knowledge; 3) CompositeMethod is introduced to com-
bine and reuse previously defined simple Methods and Correlation Rules.
With these extensions, both functional and non-functional concerns
can be analyzed together with NFRs as the criteria guiding the design
decisions. Knowledge of such analysis can be captured, cataloged,
tailored, improved, and reused. Future work of this research includes
developing a metamodel to refine and semi-formally describe the
Methods proposed in this paper. With that, we could then extend the
UML profile we previously defined for integrating the NFR Framework
with UML [15], to include the functional goal analysis concepts to
facilitate tool support.

Method

Simple
Method

Composite
Method

Meta
Method

Method

Method
Instance

Instantiate

Instantiate

Generalized
Method

Specialized
Method

(a) (b) (c)

Functional
Operationalization

Method

Model
Refinement

Method

Model
Mapping
Method

Refinement
Method

Operationalization
Method

Argumentation
Method

Figure 4. Methods Organization along Aggregation (a), Generalization (b), and Classification Dimensions

Method
Application

Methods

Source Model

Method
Knowledge
Base

Process

Product

TimePerformance!!
NFRs

Student Course
* *

class StudentCourse {
 java.util.List studentByCourse;
 java.util.List courseByStudent;
}

Decision
Graph

Code

Figure 5. Methods Application that Generates a Goal Graph and the Target Model

Emerging Trends and Challenges in IT Management 537

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

REFERENCES
[1] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-Directed

Requirements Acquisition,” Science of Computer Program-
ming, Vol. 20, 1993, pp. 3-50

[2] J. Mylopoulos, L. Chung, and E. Yu, “From Object-Oriented to
Goal-Oriented Requirements Analysis,” Comm. ACM, vol. 42,
no. 1, Jan. 1999, pp. 31-37

[3] J. Mylopoulos, L. Chung, S. Liao, and H. Wang, “Exploring
Alternatives During Requirements Analysis,” IEEE Software,
Jan./Feb.2001,pp. 2-6

[4] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and Using
Nonfunctional Requirements,” IEEE Trans. Software Engineer-
ing, Vol. 18, No. 6, June 1992,pp. 483-497

[5] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering, Kluwer Publishing, 2000

[6] Y. Yu, J. C. S. do Prado Leite, and J. Mylopoulos, “From Goals
to Aspects: Discovering Aspects from Requirements Goal Mod-
els,” In Proc. 12th IEEE Int. Requirements Engineering Confer-
ence, 2004, pp. 38-47

[7] G. Caplat, J. Sourouille, “Considerations about Model Mapping,”
Workshop in Software Model Engineering, Oct. 2003, San
Francisco, USA, http://www.metamodel.com/wisme-2003/18.pdf

[8] OMG, “UML 2.0 Superstructure Specification,” http:/ /
www.omg.org/cgi-bin/apps/doc?ptc/04-10-02.zip, Oct. 2004

[9] OMG, “MDA Guide Version 1.0.1,” http://www.omg.org/cgi-bin/
apps/doc?omg/03-06-01.pdf, June 2003

[10] S. Greenspan, J. Mylopoulos, and A. Borgida, “Capturing More
World Knowledge in the Requirements Specification,” In Proc.
6th Intl. Conf. on Software Engineering, Tokyo, Japan, 1982.

[11] R. Hull, and R. King, “Semantic database modeling: Survey,
application and research issues,” ACM Comp. Surv. Vol. 19, No.
3, 1987, pp.201-260

[12] W. Regli, X. Hu, M. Atwood, and W. Sun, “A Survey of Design
Rationale Systems: Approaches, Representation, Capture, and
Retrival,” Engineering with Computers, Vol. 16, Springer-
Verlag, pp.209-235

[13] K. Arnold, J. Gosling, and D. Homes, The Java Programming
Language, Third Edition, Addison-Wesley, 2000

[14] N. Wirth, “Program Development by Stepwise Refinement,”
Comm. ACM, Vol. 14, 1971, pp.221-227

[15] S. Supakkul and L. Chung, “A UML Profile for Goal-Oriented and
Use Case-Driven Representation of NFRs and FRs”, In Proc.
SERA’05, IEEE Computer Society. pp. 112-119

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995

[17] OMG, “Meta Object Facility (MOF) 2.0 Core Specification,”
http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-04.pdf, Oct.
2003

[18] E. Kavakli, “Goal-Oriented Requirements Engineering: A Uni-
fying Framework,” Requirements Eng., vol. 6, no.4, 2002, pp.
237-251

[19] A.I. Anton, “Goal-based Requirements Analysis,” In Proc. 2nd

IEEE Intl. Conf. Requirements Engineering, 1996, pp.136-144
[20] S. Shum, and N. Hammond, “Argumentation-Based Design

Rationale: What Use at What Cost?” International Journal of
Human-Computer Studies, Vol. 40, No. 4, 1994

[21] K. Jeffay, “The Real-Time Producer/Consumer Paradigm: A
paradigm for the construction of efficient, predictable real-time
systems,” In Proc. ACM/SIGAPP Symposium on Applied Com-
puting, Indianapolis, IN, February, 1993, pp.796-804

[22] M. Wahler, “Formalizing Relational Model Transformation
Approaches”, Research Plan, Swiss Federal Institute of Technol-
ogy Zurich, 2004, http:/ /www.zurich.ibm.com/~wah/doc/
research_plan_wahler.pdf

[23] W. Emmerich. “Software Engineering and Middleware: A
Roadmap” The Future of Software Engineering, ACM Press
2000

[24] S. Supakkul and L. Chung, “Representing, Organizing and Reus-
ing Knowledge about both Functional and Non-Functional Con-
cerns during Software Development,” Submitted

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/representing-organizing-reusing-

knowledge-functional/32836

Related Content

Real-Time Communication Support in IEEE 802.11-Based Wireless Mesh Networks
Carlos M. D. Viegas, Francisco Vasquesand Paulo Portugal (2015). Encyclopedia of Information Science

and Technology, Third Edition (pp. 7247-7259).

www.irma-international.org/chapter/real-time-communication-support-in-ieee-80211-based-wireless-mesh-

networks/112422

Creativity, Invention, and Innovation
Sérgio Maravilhas (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 4071-

4079).

www.irma-international.org/chapter/creativity-invention-and-innovation/112850

On the Suitability of Soft Systems Methodology and the Work System Method in Some Software

Project Contexts
Doncho Petkov, Steven Alter, Olga Petkovaand Theo Andrew (2013). International Journal of Information

Technologies and Systems Approach (pp. 22-34).

www.irma-international.org/article/on-the-suitability-of-soft-systems-methodology-and-the-work-system-method-in-some-

software-project-contexts/78905

The Influence of Digital Currency Popularization and Application in Electronic Payment Based on

Data Mining Technology
Xiaoyuan Sun (2023). International Journal of Information Technologies and Systems Approach (pp. 1-12).

www.irma-international.org/article/the-influence-of-digital-currency-popularization-and-application-in-electronic-payment-

based-on-data-mining-technology/323193

Public Policies for Providing Cloud Computing Services to SMEs of Latin America
Mohd Nayyer Rahmanand Badar Alam Iqbal (2018). Encyclopedia of Information Science and Technology,

Fourth Edition (pp. 6727-6737).

www.irma-international.org/chapter/public-policies-for-providing-cloud-computing-services-to-smes-of-latin-

america/184367

http://www.igi-global.com/proceeding-paper/representing-organizing-reusing-knowledge-functional/32836
http://www.igi-global.com/proceeding-paper/representing-organizing-reusing-knowledge-functional/32836
http://www.irma-international.org/chapter/real-time-communication-support-in-ieee-80211-based-wireless-mesh-networks/112422
http://www.irma-international.org/chapter/real-time-communication-support-in-ieee-80211-based-wireless-mesh-networks/112422
http://www.irma-international.org/chapter/creativity-invention-and-innovation/112850
http://www.irma-international.org/article/on-the-suitability-of-soft-systems-methodology-and-the-work-system-method-in-some-software-project-contexts/78905
http://www.irma-international.org/article/on-the-suitability-of-soft-systems-methodology-and-the-work-system-method-in-some-software-project-contexts/78905
http://www.irma-international.org/article/the-influence-of-digital-currency-popularization-and-application-in-electronic-payment-based-on-data-mining-technology/323193
http://www.irma-international.org/article/the-influence-of-digital-currency-popularization-and-application-in-electronic-payment-based-on-data-mining-technology/323193
http://www.irma-international.org/chapter/public-policies-for-providing-cloud-computing-services-to-smes-of-latin-america/184367
http://www.irma-international.org/chapter/public-policies-for-providing-cloud-computing-services-to-smes-of-latin-america/184367

