

This paper appears in the book, *Emerging Trends and Challenges in Information Technology Management, Volume 1 and Volume 2* edited by Mehdi Khosrow-Pour © 2006, Idea Group Inc.

Weakness of Association Rules: A Mechanism for Clustering

Rajesh Natarajan, IT & Systems Group, Indian Institute of Management Lucknow, Lucknow - 226 013, Uttar Pradesh, India, T: +91-522-2736659, F: +91-522-2734025, rajeshn@iiml.ac.in

B. Shekar, Quantitative Methods & Information Systems Area, Indian Institute of Management Bangalore, Bangalore - 560 076, Karnataka, India, T: +91-80-26993093, F: +91-80-26584050, shek@iimb.ernet.in

ABSTRACT

We introduce the notion of *weakness* of an AR. After providing the intuition, we develop a *weakness-based* distance-function for clustering ARs. We cluster ARs obtained from a small artificial data set through the average-linkage method. The clusters are compared with those obtained by applying a commonly used method to the same data-set.

1. INTRODUCTION

Rule immensity is an important issue in Association Rule (AR) mining. This problem concerns the multitude of discovered rules that hinder easy comprehension. We define *Weakness* as the extent to which an AR is unable to explain the presence of its constituent items. Weakness is then used as a heuristic to group ARs. Rules with similar *weakness* are placed in the same cluster, thus facilitating easy exploration of connections among them. A user needs to examine only those rules in 'relevant' clusters.

Lent, Swami and Widom [6] introduced the notion of 'clustered' ARs. Adomavicius and Tuzhilin [1] adopted an expert-driven, attribute hierarchy-based similar rule-grouping approach. The distance measure proposed by Toivonen, et al. [8] and Gupta and others [3] clustered rules that 'cover' the same set of transactions. One limitation of [8,3] is the arbitrariness of distance measures [1].

Dong and Li [2] introduced a distance metric for detecting unexpected rules. Sahar's d_{sc} [7] utilized both syntactic matching of item-sets and rule coverage of data. Jorge [5] studied clustering in the context of thematic browsing and summarization of large sets of ARs. Current research has concentrated either on syntactic (item-matching based) comparison [1,2,5] or on transaction-set coverage [3,7,8]. These approaches do not utilize certain intrinsic properties of ARs. We propose *weakness* (an intrinsic property)-based identification of specificity/generality of the AR in describing the presence of its constituents in the database.

2. WEAKNESS OF AN ASSOCIATION RULE

Consider an AR, $R: a_1 a_2 ... a_m \rightarrow a_{m+1} a_{m+2} ... a_n$, having support S_R and confidence C_R . If all items of R are present in that transaction (*t*), then R covers *t*. Let the support of an individual item $a_i \in R$ with respect to database D be Sa_i . R accounts for only S_R % of transactions in the database and does

not explain the portion (of D) containing $1 \frac{S_R}{S_{a_i}}$ % of transactions

containing a_i . This fraction may be viewed as *weakness* of R with respect

to its constituent
$$a_i: w_{a_i} = 1 \frac{S_R}{S_{a_i}}$$
 (1)

Weakness of an AR with respect to all its constituents is given by:

$$w_{R} = \frac{1}{n} \sum_{a_{i}} 1 \frac{S_{R}}{S_{a_{i}}}; a_{i} = \{a_{1}, a_{2}, ..., a_{n}\}$$
(2)

'w-value' brings out the strength of relationship between an AR and its constituents. A low w-value indicates strong characterization of its constituent items, since most of the transactions containing R's constituent items exhibit the behaviour captured by R. In addition, a low w-value signifies generality (wider coverage in D) of the relationship described by R. In contrast, a high w-value indicates specificity of the relationships revealed by the rule.

3. A WEAKNESS-BASED DISTANCE MEASURE (d_{m})

Low generality of a high *w*-value rule suggests that relationships between the rule's items and items present in other rules may be worth exploring. Actions taken only on the basis of a high *w*-value (high-specificity) rule could be skewed as the rule brings out only one aspect of the items' behaviour in the database. Since *weakness* reflects the presence of relationships among constituents, action based on rules with equal or near-equal values could yield similar results.

We define weakness-based distance as:

$$d_{w}(R_{1}, R_{2}) \quad \frac{|w_{1} \quad w_{2}|}{w_{1} \quad w_{2}}, \ 0 \le w_{l}, w_{2} \le 1.$$
(3)

Any difference Δw results in a larger distance for low *w*-values and smaller distance for high *w*-values. If $(|w_1 \cdot w_2| = |w_3 \cdot w_4|)$ and $(w_1 + w_2 \le w_3 + w_4)$, then $d_w(R_1, R_2) > d_w(R_3, R_4)$. Let $w_1 = 0.4$, $w_2 = 0.2$, $w_3 = 0.8$ and $w_4 = 0.6$. Then, $d_w(R_1, R_2) = 0.3333$ while $d_w(R_3, R_4) = 0.14285$. This may seem counter intuitive. However it has a rationale. R_1 and R_2 are unable to explain 40% and 20% respectively of their constituent items' presence. Thus, they are more general than R_3 and R_4 whose *w*-values are 0.8 and 0.6 respectively. R_3 and R_4 have poorer explanatory power than R_1 and R_2 , with respect to their constituent items.

This rationale has an analogical intuitive support. Consider four individuals $A(R_i)$, $B(R_2)$, $C(R_3)$ and $D(R_4)$. Assume A and B possess deeper knowledge (of a topic) than C and D. Let the absolute difference in the knowledge-levels between the individuals in each of $\{A,B\}$ and $\{C,D\}$ be the same. Since A and B are quite knowledgeable, the difference would seem to be larger because it would require more effort to move from A's knowledge-level to B's knowledge-level. This greater effort may be due to the subtle and conceptually deeper knowledge required. However, it may be relatively easier to bridge the gap between C and D. Fewer facts and straightforward knowledge acquisition may suffice. Similarly, R_i and R_2 may have good explanatory power and hence they may be separated by a larger distance than the more specific pair $\{R_i, R_i\}$.

436 2006 IRMA International Conference

Table 1. An artificial transaction dataset

Transaction	Nos.	Transaction	Nos.
{Bread,Butter}	6	{Bread,Jam}	5
{Bread,Milk}	4	{Bread,Butter,Milk}	10
{Milk,Chocolate}	6	{Chocolate,Biscuit}	8
{Milk,Chocolate,Biscuit}	11	{Butter,Milk}	3
{Pen,Pencil,Eraser}	13	{Pencil,Eraser}	7
{Chocolate,Pencil,Eraser}	3	{Pen,Eraser}	3
{Chocolate,Biscuit,Pencil}	5	{Bread,Butter,Milk,Jam}	4
{Bread,Jam,Milk}	12		

Table 2. Association Rules extracted from transaction set of Table 1

No	Rule	Support	Confidence	Weakness
\mathbf{R}_1	Butter→Bread	0.20	0.86957	0.321315
R ₂	Jam→Bread	0.21	1.00	0.243902
R ₃	Bread→Milk	0.30	0.7317	0.334146
R_4	Butter→Milk	0.17	0.73913	0.460435
R ₅	Butter,Milk→Bread	0.14	0.82353	0.589947
R ₆	Chocolate→ Biscuit	0.24	0.72727	0.136364
\mathbf{R}_7	$Milk, Biscuit {\rightarrow} Chocolate$	0.11	1.00	0.662778
R_8	Pen→Pencil,Eraser	0.13	0.8125	0.407738
\mathbf{R}_9	Pen→Pencil	0.13	0.8125	0.361607
R_{10}	Pencil→Eraser	0.23	0.82143	0.146978
R ₁₁	Pen→Eraser	0.16	1.00	0.192308
\mathbf{R}_{12}	Jam,Milk \rightarrow Bread	0.16	1.00	0.509284
R_{13}	Jam→Milk	0.16	0.76190	0.459048
R_{14}	$Chocolate {\rightarrow} Milk$	0.17	0.51515	0.572424

Table 3. d_{w} -based clustering

Step_No	Clusters	
1	{ R ₁₃ , R ₄ }	[0.002]
2	$\{\mathbf{R}_{14}, \mathbf{R}_5\}; \{\mathbf{R}_{13}, \mathbf{R}_4\}$	[0.015]
3	$\{\mathbf{R}_{3},\mathbf{R}_{1}\};\{\mathbf{R}_{14},\mathbf{R}_{5}\};\{\mathbf{R}_{13},\mathbf{R}_{4}\}$	[0.020]
4	$\{\mathbf{R}_{10}, \mathbf{R}_{6}\}; \{\mathbf{R}_{3}, \mathbf{R}_{1}\}; \{\mathbf{R}_{14}, \mathbf{R}_{5}\}; \{\mathbf{R}_{13}, \mathbf{R}_{4}\}$	[0.037]
5	$\{\mathbf{R}_{3}, \mathbf{R}_{1}, \mathbf{R}_{9}\}; \{\mathbf{R}_{10}, \mathbf{R}_{6}\}; \{\mathbf{R}_{14}, \mathbf{R}_{5}\}; \{\mathbf{R}_{13}, \mathbf{R}_{4}\}$	[0.049]
6	$\{\mathbf{R_{13}}, \mathbf{R_4}, \mathbf{R_{12}}\}; \{\mathbf{R_3}, \mathbf{R_1}, \mathbf{R_9}\}; \{\mathbf{R_{10}}, \mathbf{R_6}\}; \{\mathbf{R_{14}}, \mathbf{R_5}\}$	[0.051]
7	$\{\mathbf{R}_{14}, \mathbf{R}_5, \mathbf{R}_7\}; \{\mathbf{R}_{13}, \mathbf{R}_4, \mathbf{R}_{12}\}; \{\mathbf{R}_3, \mathbf{R}_1, \mathbf{R}_9\}; \{\mathbf{R}_{10}, \mathbf{R}_6\}$	[0.066]
8	$\{\mathbf{R}_{8}, \mathbf{R}_{13}, \mathbf{R}_{4}, \mathbf{R}_{12}\}; \{\mathbf{R}_{14}, \mathbf{R}_{5}, \mathbf{R}_{7}\}; \{\mathbf{R}_{3}, \mathbf{R}_{1}, \mathbf{R}_{9}\}; \{\mathbf{R}_{10}, \mathbf{R}_{6}\}$	[0.077]
9	$\{\mathbf{R_{11}}, \mathbf{R_2}\}; \{\mathbf{R_8}, \mathbf{R_{13}}, \mathbf{R_4}, \mathbf{R_{12}}\}; \{\mathbf{R_{14}}, \mathbf{R_5}, \mathbf{R_7}\}; \{\mathbf{R_3}, \mathbf{R_1}, \mathbf{R_9}\}; \{\mathbf{R_{10}}, \mathbf{R_6}\}$	[0.118]
10	$\{\mathbf{R}_{8}, \mathbf{R}_{13}, \mathbf{R}_{4}, \mathbf{R}_{12}, \mathbf{R}_{14}, \mathbf{R}_{5}, \mathbf{R}_{7}\}; \{\mathbf{R}_{11}, \mathbf{R}_{2}\}; \{\mathbf{R}_{3}, \mathbf{R}_{1}, \mathbf{R}_{9}\}; \{\mathbf{R}_{10}, \mathbf{R}_{6}\}$	[0.140]
11	$\{\mathbf{R}_{8}, \mathbf{R}_{13}, \mathbf{R}_{4}, \mathbf{R}_{12}, \mathbf{R}_{14}, \mathbf{R}_{5}, \mathbf{R}_{7}, \mathbf{R}_{3}, \mathbf{R}_{1}, \mathbf{R}_{9}\}; \{\mathbf{R}_{11}, \mathbf{R}_{2}\}; \{\mathbf{R}_{10}, \mathbf{R}_{6}\}$	[0.207]
12	$\{\mathbf{R_{11}}, \mathbf{R_2}, \mathbf{R_{10}}, \mathbf{R_6}\}; \{\mathbf{R_8}, \mathbf{R_{13}}, \mathbf{R_4}, \mathbf{R_{12}}, \mathbf{R_{14}}, \mathbf{R_5}, \mathbf{R_7}, \mathbf{R_3}, \mathbf{R_1}, \mathbf{R_9}\}$	[0.209]
13	$\{R_{11}, R_2, R_{10}, R_6, R_8, R_{13}, R_4, R_{12}, R_{14}, R_5, R_7, R_3, R_1, R_9\}$	[0.435]

Note: Values in the brackets represent merging distance

It is easy to establish the metric properties of $d_w(R_pR_j)$. The intuitive justification of $d_w(R_pR_j)$ and its being a metric enable d_w -based clustering of ARs.

4. d_w -BASED CLUSTERING OF ARs

Table 1 represents an artificial transaction database consisting of 100 transactions; the complete item-set being {*Bread*, *Butter*, *Jam*, *Milk*, *Chocolate*, *Biscuit*, *Pen*, *Pencil*, *Eraser*}. It contains fifteen unique market-baskets. Support and confidence having respective thresholds of 0.1 and 0.5 yielded fourteen ARs listed in Table 2.

 R_{6} and R_{7} have two common items namely, *Chocolate* and *Biscuit*. R_{7} has a higher w-value. Support of R_{7} (0.11) is much lower than that of R_{6} (0.24). Hence R_{7} is not able to account for the presence of {*Chocolate*,*Biscuit*} as much as R_{6} . Secondly, presence of *Milk* in R_{7} further increases its *weakness*-value because R_{7} is able to explain the presence of *Milk* in only 11 of the 50 transactions (22.0%) that contain *Milk.* However, a high support value does not guarantee a low *weakness*-value. R_3 's *weakness*-value (Support=0.30, w=0.334146) demonstrates this. R_3 's support though high is not sufficient to cover the presence of *Bread* and *Milk*.

Table 3 lists the clusters obtained through the average-linkage method [4]. Despite the difference (0.017523) in the *weakness*-values between R_{14} and R_5 being greater than the difference (0.010614) between R_{10} and R_6 , the former pair merges earlier. R_{14} and R_5 being *weaker* rules leads to lesser inter-rule distance as compared to R_{10} and R_6 .

A rule and its sub-rules being in different clusters may be due to the difference in support between a rule and its sub-rules. If the support values of a rule's items have wide variation, then different sub-rules may explain their constituents' presence to different extents. This difference in their *weakness*-values may place them in different clusters. Cluster configuration after Step 9 results in clusters C_{w1} : $\{R_{1a}, R_5, R_7\}$ and C_{w2} : $\{R_{1a}, R_6\}$ whose elements have an average *w*-values of 0.608383 and 0.141671 respectively. R_7 is a member of high-*weakness* C_{w2} respectively. Support values of clusters C_{w1} and $low-weakness C_{w2}$ respectively. Support values of constituents *Milk* (0.50), *Chocolate* (0.33) and *Biscuit* (0.24) also show some variation. Thus, low-support coupled with high variation in the support values of its constituents might result in a *weak* rule.

Surprisingly, rules describing *Milk* (the most frequent item) belong to high-*weakness* clusters. None of the rules that contain *Milk* covers its presence to a substantial extent. High support of *Milk* also increases the *weakness* of low-support rules that contain it. Thus, a frequently occurring item may be present in many high-*weakness* rules if the item is purchased in many non-overlapping low-support market-baskets.

Another observation is with respect to rules in clusters that have relatively lower average *weakness*-values. Low-*weakness* clusters may not contain high-support rules. Consider C_{w2} : { R_{10} , R_6 }. Note that support of R_{10} (0.23) is quite close to support of its items *Pencil* (0.28) and *Eraser* (0.26). High explanatory power of such a rule is derived from its support value being close to the support values of its constituent items.

5. COMPARATIVE ANALYSIS AND DISCUSSION

Sahar [7] defines d_{sc} -distance on the basis of difference in rule's itemsets and overlap in the set of transactions that each rule covers. d_{sc} considers itemsets in antecedent/consequent in their entirety while d_w considers each item of a rule separately. Table 4 displays d_{sc} -based cluster configurations.

 R_g is a sub-rule of R_g both having support 0.13. Their antecedents match completely. Hence contribution due to antecedent dissimilarity towards $d_{sc}(R_g, R_g)$ is 0. Also, R_g 's consequent ({*Pencil*}) is a subset R_g 's consequent ({*Pencil*, *Eraser*}). R_g covers all transactions covered by R_g thus increas-

Table 4. d_{sc} -based clustering

Step No	Clusters	
1	$\{\mathbf{R}_{9},\mathbf{R}_{8}\}$	[0.429]
2	$\{\mathbf{R}_{12}, \mathbf{R}_{2}\}; \{\mathbf{R}_{9}, \mathbf{R}_{8}\}$	[0.437]
3	$\{\mathbf{R}_{5},\mathbf{R}_{1}\};\{\mathbf{R}_{12},\mathbf{R}_{2}\};\{\mathbf{R}_{9},\mathbf{R}_{8}\}$	[0.442]
4	$\{R_{11}, R_9, R_8\}; \{R_5, R_1\}; \{R_2, R_{12}\}$	[1.098]
5	$\{\mathbf{R}_{4}, \mathbf{R}_{5}, \mathbf{R}_{1}\}; \{\mathbf{R}_{11}, \mathbf{R}_{9}, \mathbf{R}_{8}\}; \{\mathbf{R}_{2}, \mathbf{R}_{12}\}$	[1.892]
6	$\{\mathbf{R}_{13}, \mathbf{R}_{12}, \mathbf{R}_{2}\}; \{\mathbf{R}_{4}, \mathbf{R}_{5}, \mathbf{R}_{1}\}; \{\mathbf{R}_{11}, \mathbf{R}_{9}, \mathbf{R}_{8}\}$	[1.958]
7	$\{\mathbf{R_{10}}, \mathbf{R_{11}}, \mathbf{R_9}, \mathbf{R_8}\}; \{\mathbf{R_{13}}, \mathbf{R_{12}}, \mathbf{R_2}\}; \{\mathbf{R_4}, \mathbf{R_5}, \mathbf{R_1}\}$	[2.244]
8	$\{ {\bm{R_{14}}}, {\bm{R_6}} \}; \{ R_{10}, R_{11}, R_9, R_8 \}; \{ R_{13}, R_{12}, R_2 \}; \{ R_4, R_5, R_1 \}$	[2.313]
9	$\{ \textbf{R_{13}}, \textbf{R_{12}}, \textbf{R_{3}}, \textbf{R_{2}} \}; \{ R_{14}, R_{6} \}; \{ R_{10}, R_{11}, R_{9}, R_{8} \}; \{ R_{4}, R_{5}, R_{1} \}$	[2.734]
10	$\{\mathbf{R_{13}}, \mathbf{R_{12}}, \mathbf{R_3}, \mathbf{R_2}, \mathbf{R_4}, \mathbf{R_5}, \mathbf{R_1}\}; \{\mathbf{R_{14}}, \mathbf{R_6}\}; \{\mathbf{R_{10}}, \mathbf{R_{11}}, \mathbf{R_9}, \mathbf{R_8}\}$	[2.773]
11	$\{\mathbf{R_{7,}R_{14,}R_{6}}\};\{R_{13},R_{12},R_{3},R_{2},R_{4},R_{5},R_{1}\};\{R_{10},R_{11},R_{9},R_{8}\}$	[2.875]
12	$\{\textbf{R_{7},R_{14},R_{6},R_{13},R_{12},R_{3},R_{2},R_{4},R_{5},R_{1}}\},\{\textbf{R_{10},R_{11},R_{9},R_{8}}\}$	[3.980]
13	$\{R_{7},\!R_{14},\!R_{6},\!R_{13},\!R_{12},\!R_{3},\!R_{2},\!R_{4},\!R_{5},\!R_{1},\!R_{10},\!R_{11},\!R_{9},\!R_{8}\}$	[4.437]

Note: Values in the brackets represent merging distance

Emerging Trends and Challenges in IT Management 437

ing their similarity. Hence their low d_{sc} -value (0.429167). Hence R_s and R_q merge at Step 1.

 d_{sc} -based clustering is useful in bringing together rules originating from the same portion of a database [7]. Here each cluster consists of rules whose items are members of the same or close domains. However, a rule and its sub-rules may vary a great deal on parameters like explanatory power, etc. Hence, a user may have to examine different clusters to find rules having the same specificity/generality.

Our scheme namely, groups rules having 'similar' values of *weakness* (similar explanatory power) irrespective of their domain. Characteristics like average-*weakness* may be used to define low-*weakness* clusters leading to appropriate clusters for further examination. Rules in other clusters need not be examined thus mitigating the rule immensity problem to some extent.

6. REFERENCES

- Adomavicius, G., Tuzhilin, A.: Expert-Driven Validation of Rule-Based User Models in Personalization Applications. Data Mining and Knowledge Discovery. 5, 1/2 (2001) 33-58.
- Dong, G., Li, J.: Interestingness of Discovered Association Rules in Terms of Neighborhood-Based Unexpectedness. Proceedings of 2nd PAKDD, Springer-Verlag (1998) 72-86

- Gupta, G. K., Strehl, A., Ghosh, J.: Distance-Based Clustering of Association Rules. Proceedings of Intelligent Engineering Systems through Artificial Neural Networks, (ANNIE 1999), ASME Press. Vol 9 (1999) 759-764
- 4. Jain, A. K., Murty, M.N., Flynn, P. J.: Data Clustering: A Review, ACM Computing Surveys. **31**, 3 (1999) 264-323
- Jorge, A.: Hierarchical Clustering for thematic browsing and summarization of large sets of Association Rules, Proceedings of 2004 SIAM Conference on Data Mining (2004), http:// www.siam.org/meetings/sdm04/proceedings/ sdm04_017.pdf
- Lent, B., Swami, A., Widom, J.: Clustering Association Rules. Proceedings of Thirteenth International Conference on Data Engineering, Birmingham, UK. (April 1997) 220-231
- Sahar, S.: Exploring Interestingness through Clustering: A Framework. Proceedings of IEEE International Conference on Data Mining (ICDM 2002), IEEE Computer Society Press. (2002) 677-680
- Toivonen, H., Klemettinen, M., Ronkainen, P., Hatonen, K., Mannila, H.: Pruning and Grouping Discovered Association Rules. Proceedings of the MLnet Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, Herakhion, Crete, Greece, April, (1995)

0 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/proceeding-paper/weakness-association-rules/32804

Related Content

Construction and Application of Power Data Operation Monitoring Platform Based on Knowledge Map Reasoning

Zhao Yao, Yong Hu, Xingzhi Peng, Jiapan Heand Xuming Cheng (2023). *International Journal of Information Technologies and Systems Approach (pp. 1-14)*.

www.irma-international.org/article/construction-and-application-of-power-data-operation-monitoring-platform-based-onknowledge-map-reasoning/323566

Agile Knowledge-Based E-Government Supported By Sake System

Andrea Ko, Barna Kovácsand András Gábor (2013). Cases on Emerging Information Technology Research and Applications (pp. 191-215).

www.irma-international.org/chapter/agile-knowledge-based-government-supported/75861

Covering Based Pessimistic Multigranular Approximate Rough Equalities and Their Properties

Balakrushna Tripathyand Radha Raman Mohanty (2018). *International Journal of Rough Sets and Data Analysis (pp. 58-78).*

www.irma-international.org/article/covering-based-pessimistic-multigranular-approximate-rough-equalities-and-their-properties/190891

Rough Set Based Similarity Measures for Data Analytics in Spatial Epidemiology

Sharmila Banu K.and B.K. Tripathy (2016). International Journal of Rough Sets and Data Analysis (pp. 114-123).

www.irma-international.org/article/rough-set-based-similarity-measures-for-data-analytics-in-spatialepidemiology/144709

Exploring ITIL® Implementation Challenges in Latin American Companies

Teresa Lucio-Nietoand Dora Luz González-Bañales (2019). International Journal of Information Technologies and Systems Approach (pp. 73-86).

www.irma-international.org/article/exploring-itil-implementation-challenges-in-latin-american-companies/218859