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ABSTRACT
The management of risks associated with information technology (IT)
infrastructure becomes increasingly important, as companies may face
severe negative outcomes in case of failures. This paper proposes a new
approach to manage IT infrastructure risks even in highly dynamic
environments. Currently, IT infrastructure and its risks are managed
based on historical loss data, which allows very precise forecasts for
potential risks in stable environments. However, this is not adequate for
the increasing number of firms facing dynamic environments like
outsourcing or merger scenarios. Therefore, the next wave in IT
infrastructure risk management has to employ more qualitative meth-
odologies. Based on an ongoing case study with two leading IT
consultancies and a European service enterprise, this paper demon-
strates, how causal modeling with Bayesian Belief Networks enables
the prediction and, most important, the proactive management of IT
infrastructure risks.

INTRODUCTION
During the last decade, IT infrastructure has become a top priority on
the agenda of information systems (IS) top executives as well as IS
researchers. In 1990, this topic appeared for the first time in a survey
of the Society for Information Management (SIM) and the MIS Research
Center (MISRC) to identify the most critical issues in IS management
[22] and has not disappeared until today [8, 19].

This high awareness results from the two facts, that first, IT infrastruc-
ture is the foundation for any IT enabled business activity [8, 26], and
second, losses in case of failures are potentially severe (e.g., power
outages, natural disasters, or terrorism [9, 12]).

Current management practice for IT infrastructure, which emerged
mainly from the American IT security research history, is typically
based on historical loss data, which allow very precise forecasts for
potential risks in stable environments. For the increasing number of
firms facing dynamic environments, e.g. outsourcing or merger situa-
tions, historical data is not an adequate estimator for future events [2,
6]. Currently qualitative, questionnaire based approaches are proposed
for these scenarios, but more integrated methodologies have to be
employed in order to climb the next s-curve of proactive risk manage-
ment. Based on an ongoing case study with two leading IT consultancies
and a European service enterprise, this paper demonstrates, how causal
modeling based on Bayesian statistics enables the prediction and, most
important, the proactive management of IT infrastructure risks.

STATUS QUO OF IT INFRASTRUCTURE RISK

Classical IT Infrastructure Risk Management
Losses from operational risks like IT risks arise from two categories of
events. High frequency, low impact events are characterized by a huge
amount of loss events, each with a relatively low loss. On the contrary,
low frequency, high impact events appear very seldom, but may cause
severe damage.

A single measurement approach that addresses both event types equally
is difficult to implement. Therefore, operational risk management as
well as IT risk management typically employs both quantitative and
qualitative measurement approaches [25].

Quantitative measurement is appropriate for high frequency, low
impact events, where enough data is available. In an enterprise, a main
data source for IT incidents is the help desk trouble ticket system. Most
errors are reported to these systems, as users fortunately fulfill this
reporting obligation automatically by requesting support from the help
desk. This procedure enables very detailed ex-post analyses of the
collected data, at least if it has been collected thoroughly which may not
be the case [23]. An important part is the calculation of service levels,
which allow the measurement and control of service quality [23].

Qualitative measurement is applied, where the probability or occur-
rence of the event is low and therefore historical data is hardly available.
One prominent example is outsourcing, where literature has identified
an impressive number of outsourcing risks, the most frequent stated ones
are cost overruns, quality of service degradation, and loss of innovativeness
[15]. All these risks have been identified by expert interviews and by the
analysis of existing outsourcing deals, but concrete quantification
remains a challenge. Theory offers approaches like Extreme Value
Theory (EVT), which can be used to analyze the tail behavior of a
distribution [14, 20], however, it does not generate real incident
scenarios.

Limitat ions
As both methods have their respective merits and disadvantages, none
of them should be employed solely. Both methods should be used in
conjunction [7]. It is even more important that the classical approaches
do not allow for the simulation of major future events. As described
above, they are well suited for day-to-day management based on both
the quantitative and qualitative approaches. For future change scenarios
like an upcoming outsourcing deal, assessments can only be qualitative,
which makes the calculation of a business case incorporating the risk
component extremely difficult.
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In order to overcome this deficiency, a “perfect solution” [21] to
combine quantitative and qualitative analysis is the employment of
causal modeling methods based in Bayesian statistics, as this method
provides convincing advantages for the measurement of operational
risk.

BAYES – THE ENABLER FOR THE NEXT WAVE
In this section we investigate the principles and merits of Bayesian
statistics and introduce Bayesian Belief Networks as a way to formally
incorporate expert’s know-how (qualitative method) into classical risk
measurement activities (quantitative method).

Bayesian Statistics
Followers of “traditional” statistical thinking insist that the true but
unknown parameters of a distribution can be estimated based on the data
available [1]. “Bayesians” accept some degree of subjectivity in estimat-
ing the parameters of a distribution, as from their perspective there is
no essential distinction between observables and parameters of a
statistical model, since they are all deemed to be random [10]. Therefore
Bayesian statistics allow for a combination of the empirically gathered
data and experts belief in the model determining parameters [2].

The acceptance of subjectivity in modeling the distribution gives
Bayesian statistics a substantial advantage in operational risk measure-
ment. Major data problems can be addressed without losing statistical
rigor:

• Data quality. Filtering rules have direct implications on the
parameters of the distribution, they act like subjectivity.

• Lack of data. Whenever data is not available in the desired
quantities, structured workshops with experts on the question-
able topic can be used to gain insights into (subjective) parameter
expectations (prior information).

• Historicity of data. As data loses its value for the calculation
of the loss distribution once fundamental changes have been
applied to the organization, experts can evaluate those impacts
on the parameters thus anticipating the impact of the change.

Bayesian interference describes the process of fitting a probability
model to a set of data and summarizing the result by a probability
distribution on the parameters of the model and on unobserved quantities
such as predictions for new observations [13].

Bayesian statistics regard the process of statistical estimation as one of
continuously revising the subjective beliefs about the state of an issue
as more data become available [1]. The very basis of Bayesian methods
is the Bayes’ rule:

p(Parameter Data) p(Data Parameter) p(Parameter)∝ ⋅

The posterior distribution of a parameter is proportional to the
likelihood times the prior distribution of the parameter. The prior
distribution of the parameter represents the subjective prior beliefs,
whereas the likelihood is the probability of the observations given the
unobserved parameters. The resulting posterior distribution is the
conditional probability of the parameter given the observations.

Bayesian Belief Networks
Bayesian Belief Networks (BBN) have been studied for management
purposes for some time now and have been successfully applied within
several disciplines, amongst them decision sciences and the artificial
intelligence community (e.g. [17, 24]). Their use for operational risk
management has been advocated [1, 21, 28].

BBNs are appropriate for decision making in systems where uncertainty
is present and it is represented by n-dimensional discrete random

variables X
1
, …, X

n
, where the discrete values of the random variables

are dependent. The dependencies between the random variables are
represented by conditional probabilities or conditional densities, respec-
tively (chain rule):

( ) ( ) ( ) ( ) ( )1 n n 1, 2 n 1 n 1 1 2 n 2 2 1 1p x ,..., x C p x x x ,..., x ,C p x x ,x ,..., x ,C ... p x x ,C p x C− − −= ⋅ ⋅ ⋅ ⋅

Those conditional probabilities form a directed acyclic graph – the basic
structure of a BBN. The nodes of the graph represent the random
variables and the edges represent the relationships (conditional prob-
abilities) between those random variables. The head of an edge points
to the random variable whose conditional probability is described. The
source of an edge represents a random variable that conditions the
probability of the target node.

When observations exist, they represent information about the random
variables and determine the likelihood. Thus in a Bayesian Belief
Network a priori information as well as observations and deterministic
know-how can be considered.

THE CAUSAL MODEL FOR DESKTOP
INFRASTRUCTURE RISKS
After having introduced the concept of Bayesian statistics and Bayesian
Belief Networks, this chapter presents an actual BBN for the risks of
desktop infrastructure (desktop service providing).

Study Design
The following causal model was developed together with practice
experts on management and partner level of two leading IT consultancies.
As it is end-user centric, the model covers many IT infrastructure risks,
however it is not all-embracing. Further research might expand the focus
of this model to capture more breadth and detail. First, a preliminary
model that incorporated aspects of end-user computing risks was
designed based on literature research. Even for expert assessments, it is
advisable not to start totally from scratch. Although biasing the experts
with the initial model, this ensures the provision for existing theory. The
model was then refined in further interviews and the interview results
communicated back and forth using an iterative approach, until an
integrated, harmonized model evolved. This ensured a common under-
standing and acceptance of the model. The procedure followed the
suggestions for building theories from case study research of Eisenhardt
[11] and Yin [27]. In this ongoing study, the next step of validation will
be to match this network with real enterprise data. By using different
subsets of data, e.g. from different business units or time periods, it is
possible to both validate and calibrate the model in the enterprise
context to allow for better simulation. Already in the current state, the
model produces valid results according to the experts’ judgments, as it
represents the state in which only prior information is available. Adding
likelihood information from historical incident data will presumably
increase the prognostic power.

Risk Elements and Dependencies
The objective of this network is to calculate the percentage of desktop
uptime. In this case, we define uptime as the time when the desktop can
be used to perform its designated tasks at that point of time. Figure 1
shows the resulting Bayesian Belief Network, the following explanations
are structured according to the lower five nodes.

Desktop. This node represents the measuring objective, i.e. desktop
uptime. Therefore, it has only two possible states: “functional” and
“defective”. The percentage values for each state may be understood
either as the share of desktop systems which is up or down on average,
or the share of an average desktop system being up or down. Whether
a desktop system is functional or not, depends on the following four
direct influencing factors in this model.
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Servers (“Server_availability”). This node describes the population
of servers in an enterprise. It is assumed that servers themselves may
fail with a certain probability (0.1%), and that network failures render
servers defective with a higher probability of 0.5%. In this model, the
network node has no direct influence on the desktop itself, which means
that all communication in this company happens via servers.

Hardware (“Hardware_operation”). Each hardware error of the
desktop computer itself is captured in this node, the state of which can
be either “functional” or “defective”. The current model assumes that
when the state of this node is “defective” the state of its child “Desktop”
is also “defective”, i.e. the conditional probability is 1. This absolute
dependency is set at several nodes of this example in order to reduce
complexity. This node is depended on two parent nodes. The first one,
“HW_error” (hardware error), represents the desktop hardware failing
with a certain probability dependent on the system complexity
(“HW_complexity”, states “desktop” and “laptop”) and the adherence
to established hardware standards in the firm [16] (“HW_standard”).
Complementary to the failure rate there is the restoration rate, i.e. the
average time that field service members need to restore the functionality
of the system (“Fieldservice_TTR). This average time is mainly
affected by the current level of help desk utilization (“Helpdesk_load”).

Software (“Software_operation”). In the same way, errors in the
installed software may occur [4], which render a system defective, e.g.
cause the system to hang or simply does not perform the operations it
is intended to do.  Similarly, to the node “Hardware_operation”, this
node is influence by the error rate of problems (“SW_error”) and the
corresponding restoration rate of the help desk (“Helpdesk_TTR”).

In this model, the three main factors that influence software errors are
the adherence to software standards [16], the complexity of a software
image (or software profile), and the maturity of the installed software
[5] (nodes “Image_standard”,  “Image_complexity”,  and
“SW_ma-turity”).

User (“User_operation”). An important part of a desktop system is
the user. If the user does not know how to operate the computer, how
to use the installed software, or how to fix small issues by oneself, the
desktop system is also non-functional (“defective”) even when every-
thing else is working. Similar to the nodes “Hardware_operation” and

“Software_operation” the state of this node is mainly dependent on the
failure and restoration rate of the user. In other words, what is the
likelihood of user incidents, depending mainly on his or her IT skills
(node “User_skill”), and how quickly the help desk team can solve these
incidents (node “Helpdesk_TTR”).

4.3. Indicative feedback and application
With this input, the model is initialized with a priori information based
on expert judgment and therefore it returns the prior distribution. Each
node could be amended with observations and statistical data to calibrate
the network further. The node “Desktop” now calculates the percentage
of desktops, which are functional. The model computes a value of
97.57%, meaning a PC is not functional for on average approximately
5.3 working days per year. Consistently, one would expect a value
somewhere between 95% and 99% under typical service level agree-
ments. The current state of the model can indicatively be validated by
comparing this value to statistics of the help desk and user support
ticketing systems.

Practical demand for this approach is high, as it especially helps to better
understand, simulate, and communicate the effects of quality measures
like improvement of helpdesk quality, enforced standardization, or
increased software maturity. Indicative feedback from financial insti-
tutions also showed, that especially in the context of Basel II, causal
modeling is seen as a promising approach [3], although a working model
has not yet been developed.

One simulation scenario may demonstrate the prognostic power of this
model.

Scenario: Reducing user support service levels?  In times of
increased cost cutting initiatives, an overstaffed shared service like user
support may be regarded as a promising saving potential. But actions in
this case have to be prudent. Currently approximately 89% of all
incidents can be solved immediately. If for example this number drops
to nearly 85% due to lay-offs and therefore increased help desk load,
desktop uptime drops by 1.17 percentage points to 96.40%, meaning
that a single desktop is now on average 2.6 days per year longer defective.

Figure 1. Bayesian belief network for IT infrastructure risks (desktop focus)
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CONCLUSION AND FURTHER RESEARCH
Within this paper a new approach to manage the risks of IT infrastruc-
ture has been developed. It allows for the proactive management of these
highly important risks, thus enabling companies to better prepare for
change scenarios like outsourcing or mergers, while at the same time
improving classical decision-making. By employing Bayesian statistics,
a causal model for desktop risks has been developed in an ongoing study
with two major IT consultancies, which allows the prediction of desktop
downtimes and demonstrates the predictive power of the chosen
methodology.

However, there are some limitations. Although Bayesian statistics
perfectly combine qualitative as well as quantitative risk management
approaches, it does not completely mitigate the drawbacks of each
technique. If severely wrong expert judgments cannot be successfully
falsified through existing historical data, the predictive power may be
reduced. In the same way, incorrect data may skew model results as well.
In addition, the development and the maintenance of a sophisticated
causal model require some expertise and resources, which might be
scarce.

Further research should focus on two main areas. First, the introduced
model for desktop risks should be extended to include other elements of
IT infrastructure. Although the current model already includes many
aspects due to its user-centric characteristic, especially the network and
server nodes have to be refined. Second, more detail could be added to
the current model. In the expert interviews, focus was put only on the
most important influence factors. Other factors, which may be worth
investigating, are the effects of incentives and training on help desk and
user support efficiency, hardware quality, and user-friendliness of
software. Another interesting issue would be to include the role of
problem solving in unofficial networks, as probably many incidents
never reach the help desk but are solved elsewhere, e.g., among
coworkers [18].
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